SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Cai Yufeng) "

Sökning: WFRF:(Cai Yufeng)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Chen, Yufeng, et al. (författare)
  • Oral fungal profiling and risk of nasopharyngeal carcinoma : a population-based case-control study
  • 2023
  • Ingår i: EBioMedicine. - 2352-3964. ; 96
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Dysbiosis of the oral mycobiome has been linked to some diseases, including cancers. However, the role of oral fungal communities in nasopharyngeal carcinoma (NPC) carcinogenesis has not previously been investigated.METHODS: We characterized the oral salivary fungal mycobiome in 476 untreated incident NPC patients and 537 population-based controls using fungal internal transcribed spacer (ITS)-2 sequencing. The relationship between oral fungal mycobiome and the risk of NPC was assessed through bioinformatic and biostatistical analyses.FINDINGS: We found that lower fungal alpha diversity was associated with an increased odds of NPC [lower vs. higher: observed features (adjusted odds ratio [OR] = 5.81, 95% confidence interval [CI] = 3.60-9.38); Simpson diversity (1.53, 1.03-2.29); Shannon diversity (2.03, 1.35-3.04)]. We also observed a significant difference in global fungal community patterns between cases and controls based on Bray-Curtis dissimilarity (P < 0.001). Carriage of oral fungal species, specifically, Saccharomyces cerevisiae, Candida tropicalis, Lodderomyces elongisporus, Candida albicans, and Fusarium poae, was associated with significantly higher odds of NPC, with ORs ranging from 1.56 to 4.66. Individuals with both low fungal and low bacterial alpha diversity had a profoundly elevated risk of NPC.INTERPRETATION: Our results suggest that dysbiosis in the oral mycobiome, characterized by a loss of fungal community diversity and overgrowth of several fungal organisms, is associated with a substantially increased risk of NPC.FUNDING: This work was funded by the US National Institutes of Health, the Swedish Research Council, the High-level Talents Research Start-up Project of Fujian Medical University, and the China Scholarship Council.
  •  
2.
  • Lin, Y. B., et al. (författare)
  • Energy-effectively printed all-polymer solar cells exceeding 8.61% efficiency
  • 2018
  • Ingår i: Nano Energy. - : Elsevier BV. - 2211-2855. ; 46, s. 428-435
  • Tidskriftsartikel (refereegranskat)abstract
    • All-polymer solar cells (all-PSCs) have attracted tremendous attention in the past few years due to their unique advantages. However, up to now most of high-efficiency all-PSCs are processed by spin-coating with complicated post treatment processes, which is ill-suited to a large-area roll-to-roll (R2R) technique. In this work, high-efficiency all-PSCs based on PTB7-Th and PNDI-T10 are achieved by one of R2R compatible printing techniques, i.e. doctor-blading, without any annealing treatment. It was found that incorporating an additive into all polymer blends solution can prolong the drying time of all polymer nanocomposites from 120 to 1000 s to form a better bulk heterojunction morphology and a higher crystallinity, which thus reduce charge recombination and show much better electrical impedance spectroscopy parameters. Record-breaking power conversion efficiencies (PCEs) of 8.61% and high fill factors (FF) of 0.71 are achieved by doctor-blading under an extremely process-simple and energy-effective conditions. Moreover, large-area (2.03 cm 2 ) flexible ITO-free all-PSCs by doctor-blading with record-breaking PCEs of 6.65% and FF of 0.65 are realized, which are much higher than conventional fullerene-based ones under the same condition, demonstrating that all-PSCs are more suitable for the flexible device structure and have a bright future towards practical application with R2R manufacture.
  •  
3.
  • 2019
  • Tidskriftsartikel (refereegranskat)
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy