SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Caidahl K) ;lar1:(hj)"

Sökning: WFRF:(Caidahl K) > Jönköping University

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Härmark, Johan, et al. (författare)
  • Investigation of the elimination process of a multimodal polymer-shelled contrast agent in rats using ultrasound and transmission electron microscopy
  • 2015
  • Ingår i: Biomedical Spectroscopy and Imaging. - 2212-8794. ; 4:1, s. 81-93
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: A novel polymer-shelled contrast agent (CA) with multimodal imaging and target specific potential was developed recently and tested for its acoustical properties using different in-vitro setups.OBJECTIVE: The aim of this study was to investigate the elimination of three types of the novel polymer-shelled CA, one unmodified and two shell modified versions, in rats.METHODS: The blood elimination time was estimated by measuring the image intensity, from ultrasound images of the common carotid artery, over time after a bolus injection of the three types of the novel CA. The commercially available CA SonoVue was used as a reference. The subcellular localization of the three CAs was investigated using transmission electron microscopy.RESULTS: The ultrasound measurements indicated a blood half-life of 17–85 s for the different types of the novel CA, which was significant longer than the blood half-life time for SonoVue. Additionally, CAs were exclusively found in the circulatory system, either taken up by, or found in the vicinity of macrophages.CONCLUSIONS: Compared to the commercially available CA SonoVue, the blood circulation times for the three types of the novel polymer-shelled CA were prolonged. Moreover, macrophages were suggested to be responsible for the elimination of the CA.
  •  
2.
  •  
3.
  • Larsson, Malin K., et al. (författare)
  • Endocardial border delineation capability of a multimodal polymer-shelled contrast agent
  • 2014
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • BackgroundA novel polymer-shelled contrast agent (CA) with high mechanical and chemical stability was recently developed [1]. In excess to its ultrasound properties, it also supports targeted and multimodal imaging [2-4]. Even though these new possibilities have the potential to lead to new methodologies and approaches for non-invasive diagnosis, it is important that the fundamental diagnostic features in contrast-enhanced ultrasound are preserved. The aim of this study was therefore to examine the clinical use of the polymer-shelled CA by analyzing the left ventricular endocardial border delineation capability in a porcine model. In addition, physiological effects due to CA injections were studied.MethodsThe endocardial border delineation capability was assessed in a comparative study, which included three doses (1.5 ml, 3 ml and 5 ml, [5x108 MBs/ml]) of the polymer-shelled CA and the commercially available CA SonoVue® (1.5 ml, [2-5x108 MBs/ml]). Ultrasound images of the left ventricle were evaluated manually by blinded observers (n=3) according to a 6-segment model, in which each segment was graded as 0=not visible, 1=barely visible or 2=well visible, as well as semi-automatically by a segmentation software. Furthermore, duration of clinically useful contrast enhancement and changes in physiological parameters were evaluated.ResultsFor the highest dose of the polymer-shelled CA, the obtained segment scores, time for clinically sufficient contrast enhancement and semi-automatic delineation capability were comparable to SonoVue®. Moreover, neither dose of the polymer-shelled CA did affect the physiological parameters.ConclusionThis study demonstrated that the polymer-shelled CA can be used in contrast-enhanced diagnostic imaging without influence on major physiological parameters.
  •  
4.
  • Larsson, Malin K., et al. (författare)
  • Endocardial border delineation capability of a novel multimodal polymer-shelled contrast agent
  • 2014
  • Ingår i: Cardiovascular Ultrasound. - : Springer Science and Business Media LLC. - 1476-7120. ; 12, s. 24-
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: A novel polymer-shelled contrast agent (CA) with multimodal and target-specific potential was developed recently. To determine its ultrasonic diagnostic features, we evaluated the endocardial border delineation as visualized in a porcine model and the concomitant effect on physiological variables. Methods: Three doses of the novel polymer-shelled CA (1.5 ml, 3 ml, and 5 ml [5 x 10(8) microbubbles (MBs)/ml]) and the commercially available CA SonoVue (1.5 ml [2-5 x 10(8) MBs/ml]) were used. Visual evaluations of ultrasound images of the left ventricle were independently performed by three observers who graded each segment in a 6-segment model as either 0 = not visible, 1 = weakly visible, or 2 = visible. Moreover, the duration of clinically useful contrast enhancement and the left ventricular opacification were determined. During anesthesia, oxygen saturation, heart rate, and arterial pressure were sampled every minute and the effect of injection of CA on these physiological variables was evaluated. Results: The highest dose of the polymer-shelled CA gave results comparable to SonoVue. Thus, no significant difference in the overall segment score distribution (2-47-95 vs. 1-39-104), time for clinically sufficient contrast enhancement (20-40 s for both) and left ventricular overall opacification was found. In contrast, when comparing the endocardial border delineation capacity for different regions SonoVue showed significantly higher segment scores for base and mid, except for the mid region when injecting 1.5 ml of the polymer-shelled CA. Neither high nor low doses of the polymer-shelled CA significantly affected the investigated physiological variables. Conclusions: This study demonstrated that the novel polymer-shelled CA can be used in contrast-enhanced diagnostic imaging without influence on major physiological variables.
  •  
5.
  •  
6.
  • Widman, Erik, et al. (författare)
  • Shear wave elastography for characterization of carotid artery plaques-A feasibility study in an experimental setup
  • 2012
  • Ingår i: 2012 IEEE International Ultrasonics Symposium (IUS). - : IEEE. - 9781467345613 ; , s. 6562400-
  • Konferensbidrag (refereegranskat)abstract
    • Characterization of vulnerable plaques in the carotid artery is critical for the prevention of ischemic stroke. However, ultrasound-based methods for plaque characterization used in the clinics today are limited to visual assessment and evaluation of plaque echogenicity. Shear Wave Elastography (SWE) is a new tissue characterization technique based on radiation force-induced shear wave propagation with potential use in plaque vulnerability assessment. The purpose of this study was to develop an experimental setup to test the feasibility of SWE for carotid plaque characterization. A carotid artery phantom with a soft inclusion in the wall, mimicking a vulnerable plaque, was constructed (10% polyvinyl alcohol (PVA), 3% graphite) by exposing the vessel and plaque to three and one freeze-thaw cycles (6h freeze, 6h thaw) respectively. An Aixplorer SWE system (Supersonic Imagine) was used to measure the shear wave speed (cT) in the vessel wall and plaque. The Young's modulus (E) was then calculated via the Moens-Korteweg (M-K) equation. For comparison, eight cylinders (d = 4 cm, h = 4 cm) were constructed for mechanical testing from the same PVA batch, of which four were exposed to three freeze-thaw cycles (mimicking the vessel wall) and four to one freeze-thaw cycle (mimicking the plaque). The Young's moduli for the cylinders were obtained via a displacement controlled mechanical compression test (Instron 5567) by applying 5% strain. The mean shear wave speed was 2.6 (±0.7) m/s in the vessel wall, 1.8 (±0.7) m/s in the plaque, resulting in Evessel = 11.5 (±0.5) kPa, Eplaque = 4.3 (±0.5) kPa. The compression tests resulted in E = 64.2 (±11.1) kPa in the hard cylinder and E = 9.7 (±3.1) kPa in the soft cylinder. The results showed that it was possible to distinguish between the arterial wall and the plaque. The disagreement between mechanical testing and SWE can be explained by the fact that the shear wave does not propagate monochromatically in cylindrical geometry. To achieve a better calculation of the elastic modulus, the frequency dependency of the shear wave velocity must be considered.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy