SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Cao Renhai) ;lar1:(liu)"

Sökning: WFRF:(Cao Renhai) > Linköpings universitet

  • Resultat 1-10 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ali, Zaheer, et al. (författare)
  • Intussusceptive Vascular Remodeling Precedes Pathological Neovascularization
  • 2019
  • Ingår i: Arteriosclerosis, Thrombosis and Vascular Biology. - : Lippincott Williams & Wilkins. - 1079-5642 .- 1524-4636. ; 39:7, s. 1402-1418
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective—Pathological neovascularization is crucial for progression and morbidity of serious diseases such as cancer, diabetic retinopathy, and age-related macular degeneration. While mechanisms of ongoing pathological neovascularization have been extensively studied, the initiating pathological vascular remodeling (PVR) events, which precede neovascularization remains poorly understood. Here, we identify novel molecular and cellular mechanisms of preneovascular PVR, by using the adult choriocapillaris as a model.Approach and Results—Using hypoxia or forced overexpression of VEGF (vascular endothelial growth factor) in the subretinal space to induce PVR in zebrafish and rats respectively, and by analyzing choriocapillaris membranes adjacent to choroidal neovascular lesions from age-related macular degeneration patients, we show that the choriocapillaris undergo robust induction of vascular intussusception and permeability at preneovascular stages of PVR. This PVR response included endothelial cell proliferation, formation of endothelial luminal processes, extensive vesiculation and thickening of the endothelium, degradation of collagen fibers, and splitting of existing extravascular columns. RNA-sequencing established a role for endothelial tight junction disruption, cytoskeletal remodeling, vesicle- and cilium biogenesis in this process. Mechanistically, using genetic gain- and loss-of-function zebrafish models and analysis of primary human choriocapillaris endothelial cells, we determined that HIF (hypoxia-induced factor)-1α-VEGF-A-VEGFR2 signaling was important for hypoxia-induced PVR.Conclusions—Our findings reveal that PVR involving intussusception and splitting of extravascular columns, endothelial proliferation, vesiculation, fenestration, and thickening is induced before neovascularization, suggesting that identifying and targeting these processes may prevent development of advanced neovascular disease in the future.Visual Overview—An online visual overview is available for this article.
  •  
2.
  • Cao, Renhai, et al. (författare)
  • Collaborative interplay between FGF-2 and VEGF-C promotes lymphangiogenesis and metastasis
  • 2012
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 109:39, s. 15894-15899
  • Tidskriftsartikel (refereegranskat)abstract
    • Interplay between various lymphangiogenic factors in promoting lymphangiogenesis and lymphatic metastasis remains poorly understood. Here we show that FGF-2 and VEGF-C, two lymphangiogenic factors, collaboratively promote angiogenesis and lymphangiogenesis in the tumor microenvironment, leading to widespread pulmonary and lymph-node metastases. Coimplantation of dual factors in the mouse cornea resulted in additive angiogenesis and lymphangiogenesis. At the molecular level, we showed that FGFR-1 expressed in lymphatic endothelial cells is a crucial receptor that mediates the FGF-2-induced lymphangiogenesis. Intriguingly, the VEGFR-3-mediated signaling was required for the lymphatic tip cell formation in both FGF-2- and VEGF-C-induced lymphangiogenesis. Consequently, a VEGFR-3-specific neutralizing antibody markedly inhibited FGF-2-induced lymphangiogenesis. Thus, the VEGFR-3-induced lymphatic endothelial cell tip cell formation is a prerequisite for FGF-2-stimulated lymphangiogenesis. In the tumor microenvironment, the reciprocal interplay between FGF-2 and VEGF-C collaboratively stimulated tumor growth, angiogenesis, intratumoral lymphangiogenesis, and metastasis. Thus, intervention and targeting of the FGF-2- and VEGF-C-induced angiogenic and lymphangiogenic synergism could be potentially important approaches for cancer therapy and prevention of metastasis.
  •  
3.
  •  
4.
  • Cao, Renhai, et al. (författare)
  • Hypoxia-induced retinal angiogenesis in zebrafish as a model to study retinopathy
  • 2008
  • Ingår i: PLOS ONE. - : Public Library of Science. - 1932-6203. ; 3:7, s. e2748-
  • Tidskriftsartikel (refereegranskat)abstract
    • Mechanistic understanding and defining novel therapeutic targets of diabetic retinopathy and age-related macular degeneration (AMD) have been hampered by a lack of appropriate adult animal models. Here we describe a simple and highly reproducible adult fli-EGFP transgenic zebrafish model to study retinal angiogenesis. The retinal vasculature in the adult zebrafish is highly organized and hypoxia-induced neovascularization occurs in a predictable area of capillary plexuses. New retinal vessels and vascular sprouts can be accurately measured and quantified. Orally active anti-VEGF agents including sunitinib and ZM323881 effectively block hypoxia-induced retinal neovascularization. Intriguingly, blockage of the Notch signaling pathway by the inhibitor DAPT under hypoxia, results in a high density of arterial sprouting in all optical arteries. The Notch suppression-induced arterial sprouting is dependent on tissue hypoxia. However, in the presence of DAPT substantial endothelial tip cell formation was detected only in optic capillary plexuses under normoxia. These findings suggest that hypoxia shifts the vascular targets of Notch inhibitors. Our findings for the first time show a clinically relevant retinal angiogenesis model in adult zebrafish, which might serve as a platform for studying mechanisms of retinal angiogenesis, for defining novel therapeutic targets, and for screening of novel antiangiogenic drugs.
  •  
5.
  • Cao, Renhai, et al. (författare)
  • Mouse corneal lymphangiogenesis model.
  • 2011
  • Ingår i: Nature protocols. - : Springer Science and Business Media LLC. - 1750-2799 .- 1754-2189. ; 6:6, s. 817-26
  • Tidskriftsartikel (refereegranskat)abstract
    • This protocol describes a powerful in vivo method to quantitatively study the formation of new lymphatic vessels in the avascular cornea without interference of pre-existing lymphatics. Implantation of 100 ng of lymphangiogenic factors such as vascular endothelial growth factor (VEGF)-A, VEGF-C or fibroblast growth factor-2, together with slow-release polymers, into a surgically created micropocket in the mouse cornea elicits a robust lymphangiogenic response. Newly formed lymphatic vessels are detected by immunohistochemical staining of the flattened corneal tissue with lymphatic endothelial-specific markers such as lymphatic vessel endothelial hyaluronan receptor-1; less-specific markers such as vascular endothelial growth factor receptor 3 may also be used. Lymphatic vessel growth in relation to hemangiogenesis can be readily detected starting at day 5 or 6 after pellet implantation and persists for ∼14 d. This protocol offers a unique opportunity to study the mechanisms underlying lymphatic vessel formation, remodeling and function.
  •  
6.
  • Jensen, Lasse Dahl, et al. (författare)
  • In vivo angiogenesis and lymphangiogenesis models
  • 2009
  • Ingår i: Current molecular medicine. - : Bentham Science Publishers. - 1566-5240 .- 1875-5666. ; 9:8, s. 982-991
  • Tidskriftsartikel (refereegranskat)abstract
    • Angiogenesis research has become one of the most important areas in biomedical research. At the time of writing this review, there were approximately 3536 articles published in the year of 2008 alone on the topic of angiogenesis. The fast expansion of this research field demands development of rigorous, reliable, stable, convenient, and clinically relevant assay systems for disease diagnosis, prognosis, therapeutic evaluation, drug discovery, and mechanistic studies at the molecular level. Here, we discuss several commonly used in vivo angiogenesis models by systematically analyzing and pointing out pitfalls of each assay. Owing to existence of numerous assays and the limitation of text, it is impossible to discuss all these assays in this article. Here we select several most commonly used angiogenesis assays performed in various species including mice, chicks and zebrafish for further in-depth discussion. We hope this information will be valuable for improving current angiogenesis research.
  •  
7.
  • Jensen, Lasse Dahl, et al. (författare)
  • Nitric oxide permits hypoxia-induced lymphatic perfusion by controlling arterial-lymphatic conduits in zebrafish and glass catfish
  • 2009
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 106:43, s. 18408-18413
  • Tidskriftsartikel (refereegranskat)abstract
    • The blood and lymphatic vasculatures are structurally and functionally coupled in controlling tissue perfusion, extracellular interstitial fluids, and immune surveillance. Little is known, however, about the molecular mechanisms that underlie the regulation of bloodlymphatic vessel connections and lymphatic perfusion. Here we show in the adult zebrafish and glass catfish (Kryptopterus bicirrhis) that blood-lymphatic conduits directly connect arterial vessels to the lymphatic system. Under hypoxic conditions, arterial-lymphatic conduits (ALCs) became highly dilated and linearized by NO-induced vascular relaxation, which led to blood perfusion into the lymphatic system. NO blockage almost completely abrogated hypoxia-induced ALC relaxation and lymphatic perfusion. These findings uncover mechanisms underlying hypoxia-induced oxygen compensation by perfusion of existing lymphatics in fish. Our results might also imply that the hypoxia-induced NO pathway contributes to development of progression of pathologies, including promotion of lymphatic metastasis by modulating arterial-lymphatic conduits, in the mammalian system.
  •  
8.
  • Ji, Hong, et al. (författare)
  • TNFR1 mediates TNF-alpha-induced tumour lymphangiogenesis and metastasis by modulating VEGF-C-VEGFR3 signalling
  • 2014
  • Ingår i: Nature Communications. - : Nature Publishing Group: Nature Communications. - 2041-1723. ; 5:4944
  • Tidskriftsartikel (refereegranskat)abstract
    • Inflammation and lymphangiogenesis are two cohesively coupled processes that promote tumour growth and invasion. Here we report that TNF-alpha markedly promotes tumour lymphangiogenesis and lymphatic metastasis. The TNF-alpha-TNFR1 signalling pathway directly stimulates lymphatic endothelial cell activity through a VEGFR3-independent mechanism. However, VEGFR3-induced lymphatic endothelial cell tips are a prerequisite for lymphatic vessel growth in vivo, and a VEGFR3 blockade completely ablates TNF-alpha-induced lymphangiogenesis. Moreover, TNF-alpha-TNFR1-activated inflammatory macrophages produce high levels of VEGF-C to coordinately activate VEGFR3. Genetic deletion of TNFR1 (Tnfr1(-/-)) in mice or depletion of tumour-associated macrophages (TAMs) virtually eliminates TNF-alpha-induced lymphangiogenesis and lymphatic metastasis. Gain-of-function experiments show that reconstitution of Tnfr1(+/+) macrophages in Tnfr1(+/+) mice largely restores tumour lymphangiogenesis and lymphatic metastasis. These findings shed mechanistic light on the intimate interplay between inflammation and lymphangiogenesis in cancer metastasis, and propose therapeutic intervention of lymphatic metastasis by targeting the TNF-alpha-TNFR1 pathway.
  •  
9.
  • Religa, Piotr, et al. (författare)
  • VEGF significantly restores impaired memory behavior in Alzheimers mice by improvement of vascular survival
  • 2013
  • Ingår i: Scientific Reports. - : Nature Publishing Group: Open Access Journals - Option B / Nature Publishing Group. - 2045-2322. ; 3
  • Tidskriftsartikel (refereegranskat)abstract
    • The functional impact of amyloid peptides (Abs) on the vascular system is less understood despite these pathologic peptides are substantially deposited in the brain vasculature of Alzheimers patients. Here we show substantial accumulation of Abs 40 and 42 in the brain arterioles of Alzheimers patients and of transgenic Alzheimers mice. PurifiedAbs 1-40 and 1-42 exhibited vascular regression activity in the in vivo animal models and vessel density was reversely correlated with numbers and sizes of amyloid plaques in human patients. A significant high number of vascular cells underwent cellular apoptosis in the brain vasculature of Alzheimers patients. VEGF significantly prevented Ab-induced endothelial apoptosis in vitro. Neuronal expression of VEGF in transgenic mice restored memory behavior of Alzheimers. These findings provide conceptual implication of improvement of vascular functions as a novel therapeutic approach for the treatment of Alzheimers disease.
  •  
10.
  • Tritsaris, Katerina, et al. (författare)
  • IL-20 is an arteriogenic cytokine that remodels collateral networks and improves functions of ischemic hind limbs
  • 2007
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 104:39, s. 15364-15369
  • Tidskriftsartikel (refereegranskat)abstract
    • Successful therapeutic angiogenesis for the treatment of ischemic disorders relies on selection of optimal proangiogenic or arteriogenic agents that are able to promote establishment of functional collateral networks. Here, we show that IL-20, a pleiotropic inflammatory cytokine, displays an imperative effect on vascular remodeling. Stimulation of both large and microvascular endothelial cells with IL-20 leads to activation of receptor-dependent multiple intracellular signaling components, including increased phosphorylation levels of JAK2/STAT5, Erk1/2, and Akt; activation of small GTP-binding proteins Rac and Rho; and intracellular release of calcium. Surprisingly, IL-20 significantly promotes endothelial cell tube formation without affecting their proliferation and motility. These findings suggest that the vascular function of IL-20 involves endothelial cell organization, vessel maturation, and remodeling. Consistent with this notion, delivery of IL-20 to the ischemic muscle tissue significantly improves arteriogenesis and blood perfusion in a rat hind-limb model. Our findings provide mechanistic insights on vascular functions of IL-20 and define therapeutic implication of this cytokine for the treatment of ischemic disorders.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy