SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Carlsen Henrik) ;pers:(Enqvist Olof 1981)"

Sökning: WFRF:(Carlsen Henrik) > Enqvist Olof 1981

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Borrelli, Pablo, et al. (författare)
  • Artificial intelligence-based detection of lymph node metastases by PET/CT predicts prostate cancer-specific survival
  • 2021
  • Ingår i: Clinical Physiology and Functional Imaging. - : Wiley. - 1475-0961 .- 1475-097X. ; 41:1, s. 62-67
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction Lymph node metastases are a key prognostic factor in prostate cancer (PCa), but detecting lymph node lesions from PET/CT images is a subjective process resulting in inter-reader variability. Artificial intelligence (AI)-based methods can provide an objective image analysis. We aimed at developing and validating an AI-based tool for detection of lymph node lesions. Methods A group of 399 patients with biopsy-proven PCa who had undergone(18)F-choline PET/CT for staging prior to treatment were used to train (n = 319) and test (n = 80) the AI-based tool. The tool consisted of convolutional neural networks using complete PET/CT scans as inputs. In the test set, the AI-based lymph node detections were compared to those of two independent readers. The association with PCa-specific survival was investigated. Results The AI-based tool detected more lymph node lesions than Reader B (98 vs. 87/117;p = .045) using Reader A as reference. AI-based tool and Reader A showed similar performance (90 vs. 87/111;p = .63) using Reader B as reference. The number of lymph node lesions detected by the AI-based tool, PSA, and curative treatment was significantly associated with PCa-specific survival. Conclusion This study shows the feasibility of using an AI-based tool for automated and objective interpretation of PET/CT images that can provide assessments of lymph node lesions comparable with that of experienced readers and prognostic information in PCa patients.
  •  
2.
  • Polymeri, Erini, et al. (författare)
  • Artificial intelligence-based measurements of PET/CT imaging biomarkers are associated with disease-specific survival of high-risk prostate cancer patients
  • 2021
  • Ingår i: Scandinavian Journal of Urology. - : Medical Journals Sweden AB. - 2168-1805 .- 2168-1813. ; 55:6, s. 427-433
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective Artificial intelligence (AI) offers new opportunities for objective quantitative measurements of imaging biomarkers from positron-emission tomography/computed tomography (PET/CT). Clinical image reporting relies predominantly on observer-dependent visual assessment and easily accessible measures like SUVmax, representing lesion uptake in a relatively small amount of tissue. Our hypothesis is that measurements of total volume and lesion uptake of the entire tumour would better reflect the disease`s activity with prognostic significance, compared with conventional measurements. Methods An AI-based algorithm was trained to automatically measure the prostate and its tumour content in PET/CT of 145 patients. The algorithm was then tested retrospectively on 285 high-risk patients, who were examined using F-18-choline PET/CT for primary staging between April 2008 and July 2015. Prostate tumour volume, tumour fraction of the prostate gland, lesion uptake of the entire tumour, and SUVmax were obtained automatically. Associations between these measurements, age, PSA, Gleason score and prostate cancer-specific survival were studied, using a Cox proportional-hazards regression model. Results Twenty-three patients died of prostate cancer during follow-up (median survival 3.8 years). Total tumour volume of the prostate (p = 0.008), tumour fraction of the gland (p = 0.005), total lesion uptake of the prostate (p = 0.02), and age (p = 0.01) were significantly associated with disease-specific survival, whereas SUVmax (p = 0.2), PSA (p = 0.2), and Gleason score (p = 0.8) were not. Conclusion AI-based assessments of total tumour volume and lesion uptake were significantly associated with disease-specific survival in this patient cohort, whereas SUVmax and Gleason scores were not. The AI-based approach appears well-suited for clinically relevant patient stratification and monitoring of individual therapy.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy