SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Carlsson Jörgen) ;pers:(Carlsson Jörgen 1944)"

Sökning: WFRF:(Carlsson Jörgen) > Carlsson Jörgen 1944

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Al-Ramadan, Afkar, et al. (författare)
  • Analysis of radiation effects in two irradiated tumor spheroid models
  • 2018
  • Ingår i: Oncology Letters. - : Spandidos Publications. - 1792-1074 .- 1792-1082. ; 15:3, s. 3008-3016
  • Tidskriftsartikel (refereegranskat)abstract
    • Multicellular spheroids have proven suitable as three-dimensional in vivo-like models of non-vascularized micrometastases. Unlike monolayer-based models, spheroids mirror the cellular milieu and the pathophysiological gradients inside tumor nodules. However, there is limited knowledge of the radiation effects at the molecular level in spheroids of human origin. The present study is a presentation of selected cell biological processes that may easily be analyzed with methods available at routine pathology laboratories. Using gamma irradiated pancreatic neuroendocrine BON1 and colonic adenocarcinoma HCT116 spheroids as model systems, the present study assessed the radiobiological response in these models. Spheroid growth after irradiation was followed over time and molecular responses were subsequently assessed with immunohistochemistry (IHC) staining for descriptive analyses and semi-automatic grading of apoptosis, G(2)-phase and senescence in thin sections of the spheroids. Growth studies demonstrated the BON1 spheroids were slower growing and less sensitive to radiation compared with the HCT116 spheroids. IHC staining for G2-phase was primarily observed in the outer viable P-cell layers of the spheroids, with the 6 Gy irradiated HCT116 spheroids demonstrating a very clear increase in staining intensity compared with unirradiated spheroids. Apoptosis staining results indicated increased apoptosis with increasing radiation doses. No clear association between senescence and radiation exposure in the spheroids were observed. The present results demonstrate the feasibility of the use of multicellular spheroids of human origin in combination with IHC analyses to unravel radiobiological responses at a molecular level. The present findings inspire further investigations, including other relevant IHC-detectable molecular processes in time-and radiation dose-dependent settings.
  •  
2.
  • Carlsson, Jörgen, 1944- (författare)
  • Developmental trends in targeted radionuclide therapy : Biological aspects
  • 2008
  • Ingår i: Targeted Radionuclide Tumor Therapy. - New York : Springer. - 9781402086953 ; , s. 387-398
  • Bokkapitel (populärvet., debatt m.m.)abstract
    • Targeted radionuclide therapy of hematopoietic malignancies in the clinical setting has been achieved and similar successes with solid tumors and cells disseminated from them are likely within reach. Recombinant technologies have led to the development of a number of new targeting agents and the evaluation of a number of putative new targets is currently in progress. These advances are currently under evaluation in the preclinical setting and are expected to transition into clinical trials before long. Many of these new agents exhibit both improved pharmacological properties and enhanced cellular retention, both of which may lead to substantial improvements over existing compounds. In addition, our knowledge of basic radiobiology and its impact on the different modes of cell death is rapidly expanding, leading to new understanding in the fundamental differences between hematopoietic and epithelial tumor cells. Such knowledge will likely have a significant influence on the development of future treatment modalities. Furthermore, the complex interactions between radiation induced intracellular signaling pathways and the crucial observation that low dose radiation (e.g. less than 15 Gy) is able to significantly affect the growth of disseminated solid tumors cells suggests to us that a new era in targeted radionuclide therapy may soon be here.
  •  
3.
  • Carlsson, Jörgen, 1944- (författare)
  • EGFR-family expression and implications for targeted radionuclide therapy
  • 2008
  • Ingår i: Targeted Radionuclide Therapy. - New York : Springer. - 9781402086953 ; , s. 25-58
  • Bokkapitel (övrigt vetenskapligt/konstnärligt)abstract
    • Summary High expression in the primary tumor of receptors in the EGFR-family is most often also accompanied by a similar high expression in corresponding metastases. This makes these receptors interesting as putative targets for targeted radionuclide therapy of metastases and disseminated tumor cells. The expression of all four family members, EGFR, HER2, HER3 and HER4 is reviewed in this chapter. Studies on breast, urinary bladder, colorectal, prostate, head and neck, esophageal and glioma tumors are described and possible strategies for targeted radionuclide therapy are discussed. Quantification of receptor expression and the possible influence of genomic stability on the expression are also discussed.
  •  
4.
  • Carlsson, Jörgen, 1944-, et al. (författare)
  • Targeted Radionuclide Tumor Therapy : Biological Aspects
  • 2008
  • Bok (övrigt vetenskapligt/konstnärligt)abstract
    • The last three decades have provided opportunities to explore the potential of treating malignant diseases with antibodies or other targeting molecules labelled with nuclides. While considerable advances have been reported, there is still a significant amount of work left to accomplish before our ambitions can be achieved. It now seems timely to review the accomplishments achieved to date and to clarify the challenges that remain. The choice of radionuclide, the conjugation procedure employed, and the selection of suitable targets were early issues that were faced by our field that still persist, however we can now tackle these obstacles with significantly better insight. The expanding array of new targeting molecules (recombinant antibodies, peptides and agents based upon alternate scaffolds) may increase the therapeutic efficacy or even modify the radiation sensitivity of the targeted tumor cell. The title of this book “Targeted Radionuclide Tumour Therapy – Biological Aspects” was selected to reinforce the concept that a major focus of this volume was devoted to understanding the biological effects of targeting and radiation. These important issues have not previously been the primary focus in this context. Furthermore, our rapidly expanding knowledge of different types of cell death and the increasingly likely existence of cancer stem cells suggests to us that even more efficient approaches in targeting might be possible in the future. The development of targeted therapy is a true multidisciplinary enterprise involving physician scientists from the fields of nuclear medicine, radiation therapy, diagnostic radiology, surgery, gynaecology, pathology and medical oncology/haematology. It also involves many preclinical scientists working with experimental animal models, immunochemistry, recombinant antibody technologies, radiochemistry, radiation physics (dosimetry) and basic cell biology including the study of cell signalling pathways and the mechanisms of cellular death. Certainly several challenges remain in bringing targeted therapy into mainstream of treatment modalities, but in many of the chapters significant improvements in targeting efficiency are observed and may indicate future efficacy and acceptance, maybe not as a single treatment modality, but in combination with other strategies. It is the ambition of the editors to enable, with this volume, deeper insights in the process of improving targeted therapy for this diverse group of scientists. Clearly, some of the obstacles to gaining wider clinical acceptance might partly be related to this necessity of multidisciplinary collaborations. A number of disciplines, many of them mentioned above, have to both collaborate and coordinate with each other in order to control the chain of judgement necessary for the treatment of each patient. All these requirements may not always be available or easy to accomplish. This is a management paradigm shift, which usually would take some time. However, we hope that the chapters in this book will convince you, the reader, that a critical mass of knowledge regarding how to effectively use targeted radionuclide therapy has been accumulated. We believe, and hope that you will agree, that the time now has come when targeted therapy can soon be added to standard oncology treatment regimens.
  •  
5.
  • Sandberg, Dan T, et al. (författare)
  • Intra-image referencing for simplified assessment of HER2-expression in breast cancer metastases using the Affibody molecule ABY-025 with PET and SPECT.
  • 2017
  • Ingår i: European Journal of Nuclear Medicine and Molecular Imaging. - : Springer Science and Business Media LLC. - 1619-7070 .- 1619-7089. ; 44:8, s. 1337-1346
  • Tidskriftsartikel (refereegranskat)abstract
    • PURPOSE: In phase I/II-studies radiolabelled ABY-025 Affibody molecules identified human epidermal growth factor receptor 2 (HER2) expression in breast cancer metastases using PET and SPECT imaging. Here, we wanted to investigate the utility of a simple intra-image normalization using tumour-to-reference tissue-ratio (T/R) as a HER2 status discrimination strategy to overcome potential issues related to cross-calibration of scanning devices.METHODS: Twenty-three women with pre-diagnosed HER2-positive/negative metastasized breast cancer were scanned with [(111)In]-ABY-025 SPECT/CT (n = 7) or [(68)Ga]-ABY-025 PET/CT (n = 16). Uptake was measured in all metastases and in normal spleen, lung, liver, muscle, and blood pool. Normal tissue uptake variation and T/R-ratios were established for various time points and for two different doses of injected peptide from a total of 94 whole-body image acquisitions. Immunohistochemistry (IHC) was used to verify HER2 expression in 28 biopsied metastases. T/R-ratios were compared to IHC findings to establish the best reference tissue for each modality and each imaging time-point. The impact of shed HER2 in serum was investigated.RESULTS: Spleen was the best reference tissue across modalities, followed by blood pool and lung. Spleen-T/R was highly correlated to PET SUV in metastases after 2 h (r = 0.96, P < 0.001) and reached an accuracy of 100% for discriminating IHC HER2-positive and negative metastases at 4 h (PET) and 24 h (SPECT) after injection. In a single case, shed HER2 resulted in intense tracer retention in blood. In the remaining patients shed HER2 was elevated, but without significant impact on ABY-025 biodistribution.CONCLUSION: T/R-ratios using spleen as reference tissue accurately quantify HER2 expression with radiolabelled ABY-025 imaging in breast cancer metastases with SPECT and PET. Tracer binding to shed HER2 in serum might affect quantification in the extreme case.
  •  
6.
  • Velikyan, Irina, et al. (författare)
  • Good manufacturing practice production of [68Ga]Ga-ABY-025 for HER2 specific breast cancer imaging.
  • 2016
  • Ingår i: American Journal of Nuclear Medicine and Molecular Imaging. - 2160-8407. ; 6:2, s. 135-153
  • Tidskriftsartikel (refereegranskat)abstract
    • Therapies targeting human epidermal growth factor receptor type 2 (HER2) have revolutionized breast cancer treatment, but require invasive biopsies and rigorous histopathology for optimal patient stratification. A non-invasive and quantitative diagnostic method such as positron emission tomography (PET) for the pre-therapeutic determination of the presence and density of the HER2 would significantly improve patient management efficacy and treatment cost. The essential part of the PET methodology is the production of the radiopharmaceutical in compliance with good manufacturing practice (GMP). The use of generator produced positron emitting (68)Ga radionuclide would provide worldwide accessibility of the agent. GMP compliant, reliable and highly reproducible production of [(68)Ga]Ga-ABY-025 with control over the product peptide concentration and amount of radioactivity was accomplished within one hour. Two radiopharmaceuticals were developed differing in the total peptide content and were validated independently. The specific radioactivity could be kept similar throughout the study, and it was 6-fold higher for the low peptide content radiopharmaceutical. Intrapatient comparison of the two peptide doses allowed imaging optimization. The high peptide content decreased the uptake in healthy tissue, in particular liver, improving image contrast. The later imaging time points enhanced the contrast. The combination of high peptide content radiopharmaceutical and whole-body imaging at 2 hours post injection appeared to be optimal for routine clinical use.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy