SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Carpenter J) ;hsvcat:2"

Sökning: WFRF:(Carpenter J) > Teknik

  • Resultat 1-10 av 15
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Biollaz, S., et al. (författare)
  • Gas analysis in gasification of biomass and waste : Guideline report: Document 1
  • 2018
  • Rapport (refereegranskat)abstract
    • Gasification is generally acknowledged as one of the technologies that will enable the large-scale production of biofuels and chemicals from biomass and waste. One of the main technical challenges associated to the deployment of biomass gasification as a commercial technology is the cleaning and upgrading of the product gas. The contaminants of product gas from biomass/waste gasification include dust, tars, alkali metals, BTX, sulphur-, nitrogen- and chlorine compounds, and heavy metals. Proper measurement of the components and contaminants of the product gas is essential for the monitoring of gasification-based plants (efficiency, product quality, by-products), as well as for the proper design of the downstream gas cleaning train (for example, scrubbers, sorbents, etc.). In practice, a trade-off between reliability, accuracy and cost has to be reached when selecting the proper analysis technique for a specific application. The deployment and implementation of inexpensive yet accurate gas analysis techniques to monitor the fate of gas contaminants might play an important role in the commercialization of biomass and waste gasification processes.This special report commissioned by the IEA Bioenergy Task 33 group compiles a representative part of the extensive work developed in the last years by relevant actors in the field of gas analysis applied to(biomass and waste) gasification. The approach of this report has been based on the creation of a team of contributing partners who have supplied material to the report. This networking approach has been complemented with a literature review. The report is composed of a set of 2 documents. Document 1(the present report) describes the available analysis techniques (both commercial and underdevelopment) for the measurement of different compounds of interest present in gasification gas. The objective is to help the reader to properly select the analysis technique most suitable to the target compounds and the intended application. Document 1 also describes some examples of application of gas analysis at commercial-, pilot- and research gasification plants, as well as examples of recent and current joint research activities in the field. The information contained in Document 1 is complemented with a book of factsheets on gas analysis techniques in Document 2, and a collection of video blogs which illustrate some of the analysis techniques described in Documents 1 and 2.This guideline report would like to become a platform for the reinforcement of the network of partners working on the development and application of gas analysis, thus fostering collaboration and exchange of knowledge. As such, this report should become a living document which incorporates in future coming progress and developments in the field.
  •  
2.
  • Biollaz, S., et al. (författare)
  • Gas analysis in gasification of biomass and waste : Guideline report: Document 2 - Factsheets on gas analysis techniques
  • 2018
  • Rapport (refereegranskat)abstract
    • Gasification is generally acknowledged as one of the technologies that will enable the large-scale production of biofuels and chemicals from biomass and waste. One of the main technical challenges associated to the deployment of biomass gasification as a commercial technology is the cleaning and upgrading of the product gas. The contaminants of product gas from biomass/waste gasification include dust, tars, alkali metals, BTX, sulphur-, nitrogen- and chlorine compounds, and heavy metals. Proper measurement of the components and contaminants of the product gas is essential for the monitoring of gasification-based plants (efficiency, product quality, by-products), as well as for the proper design of the downstream gas cleaning train (for example, scrubbers, sorbents, etc.). The deployment and implementation of inexpensive yet accurate gas analysis techniques to monitor the fate of gas contaminants might play an important role in the commercialization of biomass and waste gasification processes.This special report commissioned by the IEA Bioenergy Task 33 group compiles a representative part of the extensive work developed in the last years by relevant actors in the field of gas analysis applied to (biomass and waste) gasification. The approach of this report has been based on the creation of a team of contributing partners who have supplied material to the report. This networking approach has been complemented with a literature review. This guideline report would like to become a platform for the reinforcement of the network of partners working on the development and application of gas analysis, thus fostering collaboration and exchange of knowledge. As such, this report should become a living document which incorporates in future coming progress and developments in the field.
  •  
3.
  • Carpenter, J., et al. (författare)
  • Polarization-resolved cross-correlated (C2) imaging of a photonic bandgap fiber
  • 2016
  • Ingår i: Optics Express. - 1094-4087 .- 1094-4087. ; 24:24, s. 27785-27790
  • Tidskriftsartikel (refereegranskat)abstract
    • We demonstrate polarization-resolved frequency domain cross-correlated (C2) imaging to characterize a 5m length of hollow-core photonic bandgap fiber. We produce a spectrogram of the fiber response to investigate the spatial, polarization, spectral, and temporal behavior. We then show how this temporally-resolved technique can be used to characterize multiple fiber launch conditions simultaneously by assigning each a unique time delay.
  •  
4.
  • Hollandi, R., et al. (författare)
  • nucleAIzer : A Parameter-free Deep Learning Framework for Nucleus Segmentation Using Image Style Transfer
  • 2020
  • Ingår i: Cell Systems. - : Elsevier BV. - 2405-4712. ; 10:5, s. 453-458.e6
  • Tidskriftsartikel (refereegranskat)abstract
    • Single-cell segmentation is typically a crucial task of image-based cellular analysis. We present nucleAIzer, a deep-learning approach aiming toward a truly general method for localizing 2D cell nuclei across a diverse range of assays and light microscopy modalities. We outperform the 739 methods submitted to the 2018 Data Science Bowl on images representing a variety of realistic conditions, some of which were not represented in the training data. The key to our approach is that during training nucleAIzer automatically adapts its nucleus-style model to unseen and unlabeled data using image style transfer to automatically generate augmented training samples. This allows the model to recognize nuclei in new and different experiments efficiently without requiring expert annotations, making deep learning for nucleus segmentation fairly simple and labor free for most biological light microscopy experiments. It can also be used online, integrated into CellProfiler and freely downloaded at www.nucleaizer.org. A record of this paper's transparent peer review process is included in the Supplemental Information. Microscopy image analysis of single cells can be challenging but also eased and improved. We developed a deep learning method to segment cell nuclei. Our strategy is adapting to unexpected circumstances automatically by synthesizing artificial microscopy images in such a domain as training samples.
  •  
5.
  • Carpenter, J., et al. (författare)
  • Comparison of principal modes and spatial eigenmodes in multimode optical fibre
  • 2017
  • Ingår i: Laser and Photonics Reviews. - : Wiley. - 1863-8899 .- 1863-8880. ; 11:1, s. 1600259-
  • Tidskriftsartikel (refereegranskat)abstract
    • Optical waveguide theory is an established part of optical physics. Yet only recently have fundamental phenomena such as spatial eigenmodes and principal modes been demonstrated experimentally. This work leverages recently developed techniques enabling detailed spatiotemporal characterisation of multimode fibre to provide new insights into the fundamentals of fibre propagation. This paper presents detailed analysis of all 420 of a fibre's principal modes and spatial eigenmodes and compares the similarity and differences between these two phenomena. It was found that even over very short lengths, the principal modes can not only significantly suppress modal dispersion but are also a more physically meaningful basis than spatial eigenmodes.
  •  
6.
  • Carpenter, J., et al. (författare)
  • Complete spatiotemporal characterization and optical transfer matrix inversion of a 420 mode fiber
  • 2016
  • Ingår i: Optics Letters. - 0146-9592 .- 1539-4794. ; 41:23, s. 5580-5583
  • Tidskriftsartikel (refereegranskat)abstract
    • © 2016 Optical Society of America. The ability to measure a scattering medium's optical transfer matrix, the mapping between any spatial input and output, has enabled applications such as imaging to be performed through media which would otherwise be opaque due to scattering. However, the scattering of light occurs not just in space, but also in time. We complete the characterization of scatter by extending optical transfer matrix methods into the time domain, allowing any spatiotemporal input state at one end to be mapped directly to its corresponding spatiotemporal output state. We have measured the optical transfer function of a multimode fiber in its entirety; it consists of 420 modes in/out at 32768 wavelengths, the most detailed complete characterization of multimode waveguide light propagation to date, to the best of our knowledge. We then demonstrate the ability to generate any spatial/polarization state at the output of the fiber at any wavelength, as well as predict the temporal response of any spatial/polarization input state.
  •  
7.
  •  
8.
  •  
9.
  • Lozano, Francisco J., et al. (författare)
  • New perspectives for green and sustainable chemistry and engineering : approaches from sustainable resource and energy use, management, and transformation
  • 2018
  • Ingår i: Journal of Cleaner Production. - : Elsevier. - 0959-6526 .- 1879-1786. ; 172, s. 227-232
  • Tidskriftsartikel (refereegranskat)abstract
    • The special volume on green and sustainable chemistry and engineering has fourteen papers that were considered relevant to the present day issues and discussion, such as adequate use of raw materials and efficient energy, besides considering renewable sources for materials and energy; and changing economical canons towards circular economy. Businesses, governments and Society are facing a number of challenges to tread the sustainability path and provide wellbeing for future generations. This special volume relevance provides discussions and contributions to foster that desirable future. Chemicals are ubiquitous in everyday activities. Their widespread presence provides benefits to societies’ wellbeing, but can have some deleterious effects. To counteract such effect, green engineering and sustainable assessment in industrial processes have been gathering momentum in the last thirty years. Green chemistry, green engineering, eco-efficiency, and sustainability are becoming a necessity for assessing and managing products and processes in the chemical industry. This special volume presents fourteen articles related to sustainable resource and energy use (five articles), circular economy (one article), cleaner production and sustainable process assessment (five article), and innovation in chemical products (three articles). Green and sustainable chemistry, as well as sustainable chemical engineering and renewable energy sources are required to foster and consolidate a transition towards more sustainable societies. This special volume present current trends in chemistry and chemical engineering, such as sustainable resource and energy use, circular economy, cleaner production and sustainable process assessment, and innovation in chemical products. This special volume provides insights in this direction and complementing other efforts towards such transition.
  •  
10.
  • Salami, B., et al. (författare)
  • LEGaTO: Low-Energy, Secure, and Resilient Toolset for Heterogeneous Computing
  • 2020
  • Ingår i: PROCEEDINGS OF THE 2020 DESIGN, AUTOMATION & TEST IN EUROPE CONFERENCE & EXHIBITION (DATE 2020). - 1530-1591. - 9783981926347 ; , s. 169-174
  • Konferensbidrag (refereegranskat)abstract
    • The LEGaTO project leverages task-based programming models to provide a software ecosystem for Made in-Europe heterogeneous hardware composed of CPUs, GPUs, FPGAs and dataflow engines. The aim is to attain one order of magnitude energy savings from the edge to the converged cloud/HPC, balanced with the security and resilience challenges. LEGaTO is an ongoing three-year EU H2020 project started in December 2017.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy