SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Carpenter J) ;pers:(Lauritsen T)"

Sökning: WFRF:(Carpenter J) > Lauritsen T

  • Resultat 1-10 av 47
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Paul, E. S., et al. (författare)
  • Recent Results at Ultrahigh Spin: Terminating States and Beyond in Mass 160 Rare-earth Nuclei
  • 2015
  • Ingår i: Acta Physica Polonica. Series B: Elementary Particle Physics, Nuclear Physics, Statistical Physics, Theory of Relativity, Field Theory. - 0587-4254. ; 46:3, s. 487-496
  • Tidskriftsartikel (refereegranskat)abstract
    • A classic region of band termination at high spin occurs in rare-earth nuclei with around ten valence nucleons above the Gd-146 closed core. Results are presented here for such non-collective oblate (gamma = 60 degrees) terminating states in odd-Z Ho-155, odd-odd Ho-156, and even-even Er-156, where they are compared with neighbouring nuclei. In addition to these particularly favoured states, the occurrence of collective triaxial strongly deformed (TSD) bands, bypassing the terminating states and extending to over 65 (h) over bar, is reviewed.
  •  
2.
  • Simpson, J., et al. (författare)
  • Evolution of structure and shapes in Er 158 to ultrahigh spin
  • 2023
  • Ingår i: Physical Review C. - 2469-9985. ; 107:5
  • Tidskriftsartikel (refereegranskat)abstract
    • The level structure of Er158 has been studied using the Gammasphere spectrometer via the Cd114(Ca48,4n) reaction at 215 MeV with both thin (self-supporting) and thick (backed) targets. The level scheme has been considerably extended with more than 200 new transitions and six new rotational structures, including two strongly coupled high-K bands. Configuration assignments for the new structures are based on their observed alignments, B(M1)/B(E2) ratios of reduced transition probabilities, excitation energies, and comparisons with neighboring nuclei and theoretical calculations. With increasing angular momentum, this nucleus exhibits Coriolis-induced alignments of both neutrons and protons before it then undergoes a rotation-induced transition from near-prolate collective rotation to a noncollective oblate configuration. This transition occurs via the mechanism of band termination around spin 45ħ in three rotational structures. Two distinct lifetime branches, consistent with the crossing of a collective "fast"rotational structure by an energetically favored "slow"terminating sequence, are confirmed for the positive-parity states, and similar behavior is established in the negative-parity states. Weak-intensity, high-energy transitions are observed to feed into the terminating states. At the highest spins, three collective bands with high dynamic moments of inertia and large quadrupole moments were identified. These bands are interpreted as triaxial strongly deformed structures and mark a return to collectivity at ultrahigh spin.
  •  
3.
  • Hartley, D. J., et al. (författare)
  • Persistence of collective behavior at high spin in the N=88 nucleus Tb-153
  • 2015
  • Ingår i: Physical Review C (Nuclear Physics). - 0556-2813. ; 91:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Excited states in the N = 88 nucleus Tb-153 were observed up to spin similar to 40 in an experiment utilizing the Gammasphere array. The Tb-153 states were populated in a weak alpha 4n evaporation channel of the Cl-37 + Sn-124 reaction. Two previously known sequences were extended to higher spins, and a new decoupled structure was identified. The pi h(11/2) band was observed in the spin region where other N = 88 isotopes exhibit effects of prolate to oblate shape changes leading to band termination along the yrast line, whereas Tb-153 displays a persistent collective behavior. However, minor perturbations of the very highest state in both signatures of this h(11/2) band are observed, which perhaps signal the start of the transition towards band termination.
  •  
4.
  • Rees, J. M., et al. (författare)
  • High-spin terminating states in the N=88 Ho-155 and Er-156 isotones
  • 2015
  • Ingår i: Physical Review C (Nuclear Physics). - 0556-2813. ; 91:5
  • Tidskriftsartikel (refereegranskat)abstract
    • The Sn-124(Cl-37, 6n gamma) fusion-evaporation reaction at a bombarding energy of 180 MeV has been used to significantly extend the excitation level scheme of Ho-155(67)88. The collective rotational behavior of this nucleus breaks down above spin I similar to 30 and a fully aligned noncollective (band terminating) state has been identified at I-pi = 79/2(-). Comparison with cranked Nilsson-Strutinsky calculations also provides evidence for core-excited noncollective states at I-pi = 87/2(-) and (89/2(+)) involving particle-hole excitations across the Z = 64 shell gap. A similar core-excited state in Er-156(68)88 at I-pi = (46(+)) is also presented.
  •  
5.
  • Wang, X., et al. (författare)
  • Collective structures up to spin ∼ 65h in the N 90 isotones 158Er and 157Ho
  • 2012
  • Ingår i: Journal of Physics: Conference Series. - : IOP Publishing. - 1742-6588 .- 1742-6596. ; 381:1
  • Tidskriftsartikel (refereegranskat)abstract
    • A new collective band with high dynamic moment of inertia in 158Er at spins beyond band termination has been found in addition to the two previously reported ones. The measured transition quadrupole moments (Qt) of these three bands are very similar. These three bands have been suggested to possess a triaxial strongly deformed shape, based on comparisons with calculations using the cranked Nilsson-Strutinsky model and with tilted axis cranking calculations using the Skyrme-Hartree-Fock model. In addition, three collective bands with similar high dynamic moments of inertia, tentatively assigned to 157Ho, have been observed. Thus, it is suggested that all these structures share a common underlying character and that they are most likely associated with triaxial strongly deformed minima which are predicted to be close to the yrast line at spin 50 - 70h.
  •  
6.
  • Mustafa, M., et al. (författare)
  • Diverse collective excitations in Er-159 up to high spin
  • 2011
  • Ingår i: Physical Review C (Nuclear Physics). - 0556-2813. ; 84:5
  • Tidskriftsartikel (refereegranskat)abstract
    • A spectroscopic investigation of the gamma decays from excited states in Er-159 has been performed to study the changing structural properties exhibited as ultrahigh spins (I > 60 (h) over bar) are approached. The nucleus of Er-159 was populated by the reaction Cd-116(Ca-48, 5n gamma) at a beam energy of 215 MeV, and the resulting gamma decays were studied using the Gammasphere spectrometer. New rotational bands and extensions to existing sequences were observed, which are discussed in terms of the cranked shell model, revealing a diverse range of quasiparticle configurations. At spins around 50 (h) over bar, there is evidence for a change from dominant prolate collective motion at the yrast line to oblate non-collective structures via the mechanism of band termination. A possible strongly deformed triaxial band occurs at these high spins, which indicates collectivity beyond 50 (h) over bar. The high-spin data are interpreted within the framework of cranked Nilsson-Strutinsky calculations.
  •  
7.
  • Revill, J. P., et al. (författare)
  • Quadrupole moments of coexisting collective shapes at high spin in Er-154
  • 2013
  • Ingår i: Physical Review C (Nuclear Physics). - 0556-2813. ; 88:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Four high-spin collective bands have been populated in Er-154(68)86 via the Pd-110(Ti-48, (4)n gamma)Er-154 reaction. Average transition quadrupole moments Q(t) have been measured for three of the bands by using the Doppler-shift attenuation method. The strongest band has a value of Q(t) = 11.0 +/- 1.0 e b, similar to values found recently for four triaxial strongly deformed (TSD) bands in Er-157,Er-158. The second band has a value of Q(t) = 19.5 +/- 3.2 e b, consistent with a predicted axially symmetric superdeformed (SD) shape, similar in deformation to the Dy-152 isotone, and is used as a calibration point. The third, new band has a value of Q(t) = 9.9 +/- 2.2 e b. The results confirm the unexpectedly large Q(t) moments for the favored TSD bands in light erbium isotopes.
  •  
8.
  • Revill, J. P., et al. (författare)
  • Relative quadrupole moments of exotic shapes at ultrahigh spin in 154Er : Calibrating the TSD/SD puzzle
  • 2012
  • Ingår i: Journal of Physics: Conference Series. - : IOP Publishing. - 1742-6588 .- 1742-6596.
  • Konferensbidrag (refereegranskat)abstract
    • Transition quadrupole moments, Qt, of two ultrahigh-spin, collective structures in 154Er have been measured for the first time using the Doppler Shift Attenuation Method (DSAM). Data were acquired at the ATLAS accelerator facility of Argonne National Laboratory, using the Gammasphere detector array. A thick, gold-backed 110Pd foil was bombarded by a beam of 48Ti ions at 215 MeV. The Qt for each band was determined from the Doppler shift of gamma rays emitted by the resulting recoil nuclei. The extracted transition quadrupole moments are significantly different in magnitude, suggesting the two structures in 154Er represent distinct exotic nuclear shapes, namely axial superdeformed (SD) with Q t 20 eb, and triaxial strongly deformed (TSD) with Qt ≈ 11 eb. Indeed, the results calibrate the quadrupole moments of TSD bands recently measured in light erbium nuclei, 157,158Er.
  •  
9.
  • Riley, M. A., et al. (författare)
  • Strongly Deformed Nuclear Shapes at Ultra-High Spin and Shape Coexistence in N\sim 90 Nuclei
  • 2009
  • Ingår i: Acta Physica Polonica B. - 0587-4254. ; 40:3, s. 513-522
  • Tidskriftsartikel (refereegranskat)abstract
    • The N similar to 90 region of the nuclear chart has featured prominently as the spectroscopy of nuclei at extreme spin has progressed. This talk will present recent discoveries from investigations of high spin behavior in the N similar to 90 Er, Tm and Yb nuclei utilizing the Gammasphere gamma-ray spectrometer. In particular it will include discussion of the beautiful shape evolution and coexistence observed in these nuclei along with the identification of a remarkable new family of band structures. The latter are very weakly populated rotational sequences with high moment of inertia that bypass the classic terminating configurations near spin 40-50 (h) over bar, marking a return to collectivity that extends discrete gamma-ray spectroscopy to well over 60 (h) over bar. Establishing the nature of the yrast states in these nuclei beyond the oblate band-termination states has been a major goal for the past two decades. Cranking calculations suggest that these new structures most likely represent stable triaxial strongly deformed bands that lie in a valley of favored shell energy in deformation and particle-number space.
  •  
10.
  • Wang, X., et al. (författare)
  • Quadrupole moments of collective structures up to spin similar to 65(h)over-bar in Er-157 and Er-158: A challenge for understanding triaxiality in nuclei
  • 2011
  • Ingår i: Physics Letters. Section B: Nuclear, Elementary Particle and High-Energy Physics. - : Elsevier BV. - 0370-2693. ; 702:2-3, s. 127-130
  • Tidskriftsartikel (refereegranskat)abstract
    • The transition quadrupole moments. Q(t), of four weakly populated collective bands up to spin similar to 65h in Er-157,Er-158 have been measured to be similar to II eb demonstrating that these sequences are associated with large deformations. However, the data are inconsistent with calculated values from cranked Nilsson-Strutinsky calculations that predict the lowest energy triaxial shape to be associated with rotation about the short principal axis. The data appear to favor either a stable triaxial shape rotating about the intermediate axis or, alternatively, a triaxial shape with larger deformation rotating about the short axis. These new results challenge the present understanding of triaxiality in nuclei. (C) 2011 Elsevier B.V. All rights reserved.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 47

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy