SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Carpenter P. T.) ;pers:(Kondev F G)"

Sökning: WFRF:(Carpenter P. T.) > Kondev F G

  • Resultat 1-10 av 34
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Henning, G., et al. (författare)
  • Exploring the stability of super heavy elements: First measurement of the fission barrier of 254No
  • 2014
  • Ingår i: EPJ Web of Conferences. - : EDP Sciences. - 2101-6275 .- 2100-014X. ; 66
  • Konferensbidrag (refereegranskat)abstract
    • The gamma-ray multiplicity and total energy emitted by the heavy nucleus 254No have been measured at 2 different beam energies. From these measurements, the initial distributions of spin I and excitation energy E * of 254No were constructed. The distributions display a saturation in excitation energy, which allows a direct determination of the fission barrier. 254No is the heaviest shell-stabilized nucleus with a measured fission barrier. © Owned by the authors, published by EDP Sciences, 2014.
  •  
2.
  • Riley, M. A., et al. (författare)
  • Observation of states beyond band termination in Er-156,Er-157,Er-158 and strongly deformed structures in Hf-173,Hf-174,Hf-175
  • 2006
  • Ingår i: Physica Scripta. - 0031-8949. ; T125, s. 123-126
  • Tidskriftsartikel (refereegranskat)abstract
    • High-spin terminating bands in heavy nuclei were first identified in nuclei around Er-158(90). While examples of terminating states have been identified in a number of erbium isotopes, almost nothing is known about the states lying beyond band termination. In the present work, the high-spin structure of Er-156,Er-157,Er-158 has been studied using the Gammasphere spectrometer. The subject of triaxial superdeformation and 'wobbling' modes in Lu nuclei has rightly attracted a great deal of attention. Very recently four strongly or superdeformed (SD) sequences have been observed in Hf-174, and cranking calculations using the Ultimate Cranker code predict that such structures may have significant triaxial deformation. We have performed two experiments in an attempt to verify the possible triaxial nature of these bands. A lifetime measurement was performed to confirm the large (and similar) deformation of the bands. In addition, a high-statistics, thin-target experiment took place to search for linking transitions between the SD bands, possible wobbling modes, and new SD band structures.
  •  
3.
  • Simpson, J., et al. (författare)
  • Evolution of structure and shapes in Er 158 to ultrahigh spin
  • 2023
  • Ingår i: Physical Review C. - 2469-9985. ; 107:5
  • Tidskriftsartikel (refereegranskat)abstract
    • The level structure of Er158 has been studied using the Gammasphere spectrometer via the Cd114(Ca48,4n) reaction at 215 MeV with both thin (self-supporting) and thick (backed) targets. The level scheme has been considerably extended with more than 200 new transitions and six new rotational structures, including two strongly coupled high-K bands. Configuration assignments for the new structures are based on their observed alignments, B(M1)/B(E2) ratios of reduced transition probabilities, excitation energies, and comparisons with neighboring nuclei and theoretical calculations. With increasing angular momentum, this nucleus exhibits Coriolis-induced alignments of both neutrons and protons before it then undergoes a rotation-induced transition from near-prolate collective rotation to a noncollective oblate configuration. This transition occurs via the mechanism of band termination around spin 45ħ in three rotational structures. Two distinct lifetime branches, consistent with the crossing of a collective "fast"rotational structure by an energetically favored "slow"terminating sequence, are confirmed for the positive-parity states, and similar behavior is established in the negative-parity states. Weak-intensity, high-energy transitions are observed to feed into the terminating states. At the highest spins, three collective bands with high dynamic moments of inertia and large quadrupole moments were identified. These bands are interpreted as triaxial strongly deformed structures and mark a return to collectivity at ultrahigh spin.
  •  
4.
  • Henning, G., et al. (författare)
  • Fission Barrier of Superheavy Nuclei and Persistence of Shell Effects at High Spin: Cases of No-254 and Th-220
  • 2014
  • Ingår i: Physical Review Letters. - 1079-7114 .- 0031-9007. ; 113:26
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on the first measurement of the fission barrier height in a heavy shell-stabilized nucleus. The fission barrier height of No-254 is measured to be B-f = 6.0 +/- 0.5 MeV at spin 15 (h) over bar and, by extrapolation, B-f = 6.6 +/- 0.9 MeV at spin 0 (h) over bar. This information is deduced from the measured distribution of entry points in the excitation energy versus spin plane. The same measurement is performed for Th-220 and only a lower limit of the fission barrier height can be determined: B-f (I) > 8 MeV. Comparisons with theoretical fission barriers test theories that predict properties of superheavy elements.
  •  
5.
  • Lopez-Martens, A., et al. (författare)
  • Stability and synthesis of superheavy elements: Fighting the battle against fission - example of No-254
  • 2016
  • Ingår i: EPJ Web of Conferences. - : EDP Sciences. - 2101-6275 .- 2100-014X. - 9782759890118 ; 131
  • Konferensbidrag (refereegranskat)abstract
    • Superheavy nuclei exist solely due to quantum shell effects, which create a pocket in the potential-energy surface of the nucleus, thus providing a barrier against spontaneous fission. Determining the height of the fission barrier and its angular-momentum dependence is important to quantify the role that microscopic shell corrections play in enhancing and extending the limits of nuclear stability. In this talk, the first measurement of a fission barrier in the very heavy nucleus No-254 will be presented.
  •  
6.
  • Riley, M A, et al. (författare)
  • Beyond band termination in Er-157 and the search for wobbling excitations in strongly deformed Hf-174
  • 2005
  • Ingår i: Journal of Physics G: Nuclear and Particle Physics. - : IOP Publishing. - 0954-3899 .- 1361-6471. ; 31:10, s. 1735-1740
  • Tidskriftsartikel (refereegranskat)abstract
    • High-spin terminating bands in heavy nuclei were first identified in nuclei around Er-158(90). While examples of special terminating states have been identified in a number of erbium isotopes, almost nothing is known about the states lying beyond band termination. In the present work the high-spin structure of Er-157 has been studied using the Gammasphere spectrometer. The subject of triaxial superdeformation and 'wobbling' modes in Lu nuclei has rightly attracted a great deal of attention. Very recently, four strongly or superdeformed (SD) sequences have been observed in Hf-174 and ultimate cranker calculations predict, such structures may have significant triaxial deformation. We have performed two experiments in an attempt to verify the possible triaxial nature of these bands. A lifetime measurement was performed to confirm the large (and similar) deformation of the bands. In addition, a high-statistics, thin-target experiment was run to search for linking transitions between the SD bands and possible wobbling modes.
  •  
7.
  • Andreyev, A. N., et al. (författare)
  • α decay of the neutron-deficient isotope 190At
  • 2023
  • Ingår i: Physical Review C. - 2469-9985. ; 108:3
  • Tidskriftsartikel (refereegranskat)abstract
    • The α decay of the neutron-deficient 190At isotope was observed following the 103Rh(90Zr,3n)190At reaction at Argonne National Laboratory. The reaction products were separated from the beam using the Argonne Gas-Filled Analyzer and implanted into a double-sided Si strip detector. The spatial and temporal correlations between implanted nuclei and subsequent α decays towards the known daughter isotope 186Bi were used to identify and characterize 190At nuclei. Two possible decay scenarios are proposed for the 190At→186Bi decay.
  •  
8.
  • Hartley, D. J., et al. (författare)
  • Persistence of collective behavior at high spin in the N=88 nucleus Tb-153
  • 2015
  • Ingår i: Physical Review C (Nuclear Physics). - 0556-2813. ; 91:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Excited states in the N = 88 nucleus Tb-153 were observed up to spin similar to 40 in an experiment utilizing the Gammasphere array. The Tb-153 states were populated in a weak alpha 4n evaporation channel of the Cl-37 + Sn-124 reaction. Two previously known sequences were extended to higher spins, and a new decoupled structure was identified. The pi h(11/2) band was observed in the spin region where other N = 88 isotopes exhibit effects of prolate to oblate shape changes leading to band termination along the yrast line, whereas Tb-153 displays a persistent collective behavior. However, minor perturbations of the very highest state in both signatures of this h(11/2) band are observed, which perhaps signal the start of the transition towards band termination.
  •  
9.
  • Paul, E. S., et al. (författare)
  • Recent Results at Ultrahigh Spin: Terminating States and Beyond in Mass 160 Rare-earth Nuclei
  • 2015
  • Ingår i: Acta Physica Polonica. Series B: Elementary Particle Physics, Nuclear Physics, Statistical Physics, Theory of Relativity, Field Theory. - 0587-4254. ; 46:3, s. 487-496
  • Tidskriftsartikel (refereegranskat)abstract
    • A classic region of band termination at high spin occurs in rare-earth nuclei with around ten valence nucleons above the Gd-146 closed core. Results are presented here for such non-collective oblate (gamma = 60 degrees) terminating states in odd-Z Ho-155, odd-odd Ho-156, and even-even Er-156, where they are compared with neighbouring nuclei. In addition to these particularly favoured states, the occurrence of collective triaxial strongly deformed (TSD) bands, bypassing the terminating states and extending to over 65 (h) over bar, is reviewed.
  •  
10.
  • Rees, J. M., et al. (författare)
  • High-spin terminating states in the N=88 Ho-155 and Er-156 isotones
  • 2015
  • Ingår i: Physical Review C (Nuclear Physics). - 0556-2813. ; 91:5
  • Tidskriftsartikel (refereegranskat)abstract
    • The Sn-124(Cl-37, 6n gamma) fusion-evaporation reaction at a bombarding energy of 180 MeV has been used to significantly extend the excitation level scheme of Ho-155(67)88. The collective rotational behavior of this nucleus breaks down above spin I similar to 30 and a fully aligned noncollective (band terminating) state has been identified at I-pi = 79/2(-). Comparison with cranked Nilsson-Strutinsky calculations also provides evidence for core-excited noncollective states at I-pi = 87/2(-) and (89/2(+)) involving particle-hole excitations across the Z = 64 shell gap. A similar core-excited state in Er-156(68)88 at I-pi = (46(+)) is also presented.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 34

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy