SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Carreras Torres Robert) ;pers:(Martin Richard M)"

Sökning: WFRF:(Carreras Torres Robert) > Martin Richard M

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Murphy, Neil, et al. (författare)
  • Circulating Levels of Insulin-like Growth Factor 1 and Insulin-like Growth Factor Binding Protein 3 Associate With Risk of Colorectal Cancer Based on Serologic and Mendelian Randomization Analyses
  • 2020
  • Ingår i: Gastroenterology. - : Elsevier BV. - 0016-5085 .- 1528-0012. ; 158:5, s. 1300-1312.e20
  • Tidskriftsartikel (refereegranskat)abstract
    • Background & Aims: Human studies examining associations between circulating levels of insulin-like growth factor 1 (IGF1) and insulin-like growth factor binding protein 3 (IGFBP3) and colorectal cancer risk have reported inconsistent results. We conducted complementary serologic and Mendelian randomization (MR) analyses to determine whether alterations in circulating levels of IGF1 or IGFBP3 are associated with colorectal cancer development.Methods: Serum levels of IGF1 were measured in blood samples collected from 397,380 participants from the UK Biobank, from 2006 through 2010. Incident cancer cases and cancer cases recorded first in death certificates were identified through linkage to national cancer and death registries. Complete follow-up was available through March 31, 2016. For the MR analyses, we identified genetic variants associated with circulating levels of IGF1 and IGFBP3. The association of these genetic variants with colorectal cancer was examined with 2-sample MR methods using genome-wide association study consortia data (52,865 cases with colorectal cancer and 46,287 individuals without [controls])Results: After a median follow-up period of 7.1 years, 2665 cases of colorectal cancer were recorded. In a multivariable-adjusted model, circulating level of IGF1 associated with colorectal cancer risk (hazard ratio per 1 standard deviation increment of IGF1, 1.11; 95% confidence interval [CI] 1.05–1.17). Similar associations were found by sex, follow-up time, and tumor subsite. In the MR analyses, a 1 standard deviation increment in IGF1 level, predicted based on genetic factors, was associated with a higher risk of colorectal cancer risk (odds ratio 1.08; 95% CI 1.03–1.12; P = 3.3 × 10–4). Level of IGFBP3, predicted based on genetic factors, was associated with colorectal cancer risk (odds ratio per 1 standard deviation increment, 1.12; 95% CI 1.06–1.18; P = 4.2 × 10–5). Colorectal cancer risk was associated with only 1 variant in the IGFBP3 gene region (rs11977526), which also associated with anthropometric traits and circulating level of IGF2.Conclusions: In an analysis of blood samples from almost 400,000 participants in the UK Biobank, we found an association between circulating level of IGF1 and colorectal cancer. Using genetic data from 52,865 cases with colorectal cancer and 46,287 controls, a higher level of IGF1, determined by genetic factors, was associated with colorectal cancer. Further studies are needed to determine how this signaling pathway might contribute to colorectal carcinogenesis.
  •  
2.
  • Alcala, Karine, et al. (författare)
  • The relationship between blood pressure and risk of renal cell carcinoma
  • 2022
  • Ingår i: International Journal of Epidemiology. - : Oxford University Press (OUP). - 1464-3685 .- 0300-5771. ; 51:4, s. 1317-1327
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: The relation between blood pressure and kidney cancer risk is well established but complex and different study designs have reported discrepant findings on the relative importance of diastolic blood pressure (DBP) and systolic blood pressure (SBP). In this study, we sought to describe the temporal relation between diastolic and SBP with renal cell carcinoma (RCC) risk in detail.METHODS: Our study involved two prospective cohorts: the European Prospective Investigation into Cancer and Nutrition study and UK Biobank, including >700 000 participants and 1692 incident RCC cases. Risk analyses were conducted using flexible parametric survival models for DBP and SBP both separately as well as with mutuality adjustment and then adjustment for extended risk factors. We also carried out univariable and multivariable Mendelian randomization (MR) analyses (DBP: ninstruments = 251, SBP: ninstruments = 213) to complement the analyses of measured DBP and SBP.RESULTS: In the univariable analysis, we observed clear positive associations with RCC risk for both diastolic and SBP when measured ≥5 years before diagnosis and suggestive evidence for a stronger risk association in the year leading up to diagnosis. In mutually adjusted analysis, the long-term risk association of DBP remained, with a hazard ratio (HR) per standard deviation increment 10 years before diagnosis (HR10y) of 1.20 (95% CI: 1.10-1.30), whereas the association of SBP was attenuated (HR10y: 1.00, 95% CI: 0.91-1.10). In the complementary multivariable MR analysis, we observed an odds ratio for a 1-SD increment (ORsd) of 1.34 (95% CI: 1.08-1.67) for genetically predicted DBP and 0.70 (95% CI: 0.56-0.88) for genetically predicted SBP.CONCLUSION: The results of this observational and MR study are consistent with an important role of DBP in RCC aetiology. The relation between SBP and RCC risk was less clear but does not appear to be independent of DBP.
  •  
3.
  • Carreras-Torres, Robert, et al. (författare)
  • Obesity, metabolic factors and risk of different histological types of lung cancer : a Mendelian randomization study
  • 2017
  • Ingår i: PLOS ONE. - : Public library science. - 1932-6203. ; 12:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Assessing the relationship between lung cancer and metabolic conditions is challenging because of the confounding effect of tobacco. Mendelian randomization (MR), or the use of genetic instrumental variables to assess causality, may help to identify the metabolic drivers of lung cancer. Methods and findings: We identified genetic instruments for potential metabolic risk factors and evaluated these in relation to risk using 29,266 lung cancer cases (including 11,273 adenocarcinomas, 7,426 squamous cell and 2,664 small cell cases) and 56,450 controls. The MR risk analysis suggested a causal effect of body mass index (BMI) on lung cancer risk for two of the three major histological subtypes, with evidence of a risk increase for squamous cell carcinoma (odds ratio (OR) [95% confidence interval (CI)] = 1.20 [1.01-1.43] and for small cell lung cancer (OR [95% CI] = 1.52 [1.15-2.00]) for each standard deviation (SD) increase in BMI [4.6 kg/m(2)]), but not for adenocarcinoma (OR [95% CI] = 0.93 [0.79-1.08]) (P-heterogeneity = 4.3x10(-3)). Additional analysis using a genetic instrument for BMI showed that each SD increase in BMI increased cigarette consumption by 1.27 cigarettes per day (P = 2.1x10(-3)), providing novel evidence that a genetic susceptibility to obesity influences smoking patterns. There was also evidence that low-density lipoprotein cholesterol was inversely associated with lung cancer overall risk (OR [95% CI] = 0.90 [0.84-0.97] per SD of 38 mg/dl), while fasting insulin was positively associated (OR [95% CI] = 1.63 [1.25-2.13] per SD of 44.4 pmol/l). Sensitivity analyses including a weighted-median approach and MR-Egger test did not detect other pleiotropic effects biasing the main results. Conclusions: Our results are consistent with a causal role of fasting insulin and low-density lipoprotein cholesterol in lung cancer etiology, as well as for BMI in squamous cell and small cell carcinoma. The latter relation may be mediated by a previously unrecognized effect of obesity on smoking behavior.
  •  
4.
  • Carreras-Torres, Robert, et al. (författare)
  • The causal relevance of body mass index in different histological types of lung cancer : a Mendelian randomization study
  • 2016
  • Ingår i: Scientific Reports. - : Nature Publishing Group. - 2045-2322. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • Body mass index (BMI) is inversely associated with lung cancer risk in observational studies, even though it increases the risk of several other cancers, which could indicate confounding by tobacco smoking or reverse causality. We used the two-sample Mendelian randomization (MR) approach to circumvent these limitations of observational epidemiology by constructing a genetic instrument for BMI, based on results from the GIANT consortium, which was evaluated in relation to lung cancer risk using GWAS results on 16,572 lung cancer cases and 21,480 controls. Results were stratified by histological subtype, smoking status and sex. An increase of one standard deviation (SD) in BMI (4.65 Kg/m(2)) raised the risk for lung cancer overall (OR = 1.13; P = 0.10). This was driven by associations with squamous cell (SQ) carcinoma (OR = 1.45; P = 1.2 × 10(-3)) and small cell (SC) carcinoma (OR = 1.81; P = 0.01). An inverse trend was seen for adenocarcinoma (AD) (OR = 0.82; P = 0.06). In stratified analyses, a 1 SD increase in BMI was inversely associated with overall lung cancer in never smokers (OR = 0.50; P = 0.02). These results indicate that higher BMI may increase the risk of certain types of lung cancer, in particular SQ and SC carcinoma.
  •  
5.
  • Haycock, Philip C., et al. (författare)
  • Association Between Telomere Length and Risk of Cancer and Non-Neoplastic Diseases A Mendelian Randomization Study
  • 2017
  • Ingår i: JAMA Oncology. - : American Medical Association. - 2374-2437 .- 2374-2445. ; 3:5, s. 636-651
  • Tidskriftsartikel (refereegranskat)abstract
    • IMPORTANCE: The causal direction and magnitude of the association between telomere length and incidence of cancer and non-neoplastic diseases is uncertain owing to the susceptibility of observational studies to confounding and reverse causation. OBJECTIVE: To conduct a Mendelian randomization study, using germline genetic variants as instrumental variables, to appraise the causal relevance of telomere length for risk of cancer and non-neoplastic diseases. DATA SOURCES: Genomewide association studies (GWAS) published up to January 15, 2015. STUDY SELECTION: GWAS of noncommunicable diseases that assayed germline genetic variation and did not select cohort or control participants on the basis of preexisting diseases. Of 163 GWAS of noncommunicable diseases identified, summary data from 103 were available. DATA EXTRACTION AND SYNTHESIS: Summary association statistics for single nucleotide polymorphisms (SNPs) that are strongly associated with telomere length in the general population. MAIN OUTCOMES AND MEASURES: Odds ratios (ORs) and 95% confidence intervals (CIs) for disease per standard deviation (SD) higher telomere length due to germline genetic variation. RESULTS: Summary data were available for 35 cancers and 48 non-neoplastic diseases, corresponding to 420 081 cases (median cases, 2526 per disease) and 1 093 105 controls (median, 6789 per disease). Increased telomere length due to germline genetic variation was generally associated with increased risk for site-specific cancers. The strongest associations (ORs [ 95% CIs] per 1-SD change in genetically increased telomere length) were observed for glioma, 5.27 (3.15-8.81); serous low-malignant-potential ovarian cancer, 4.35 (2.39-7.94); lung adenocarcinoma, 3.19 (2.40-4.22); neuroblastoma, 2.98 (1.92-4.62); bladder cancer, 2.19 (1.32-3.66); melanoma, 1.87 (1.55-2.26); testicular cancer, 1.76 (1.02-3.04); kidney cancer, 1.55 (1.08-2.23); and endometrial cancer, 1.31 (1.07-1.61). Associations were stronger for rarer cancers and at tissue sites with lower rates of stem cell division. There was generally little evidence of association between genetically increased telomere length and risk of psychiatric, autoimmune, inflammatory, diabetic, and other non-neoplastic diseases, except for coronary heart disease (OR, 0.78 [ 95% CI, 0.67-0.90]), abdominal aortic aneurysm (OR, 0.63 [ 95% CI, 0.49-0.81]), celiac disease (OR, 0.42 [ 95% CI, 0.28-0.61]) and interstitial lung disease (OR, 0.09 [ 95% CI, 0.05-0.15]). CONCLUSIONS AND RELEVANCE: It is likely that longer telomeres increase risk for several cancers but reduce risk for some non-neoplastic diseases, including cardiovascular diseases.
  •  
6.
  • Johansson, Mattias, et al. (författare)
  • The influence of obesity-related factors in the etiology of renal cell carcinoma—A mendelian randomization study
  • 2019
  • Ingår i: PLoS Medicine. - : Public Library of Science (PLoS). - 1549-1277 .- 1549-1676. ; 16:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Several obesity-related factors have been associated with renal cell carcinoma (RCC), but it is unclear which individual factors directly influence risk. We addressed this question using genetic markers as proxies for putative risk factors and evaluated their relation to RCC risk in a mendelian randomization (MR) framework. This methodology limits bias due to confounding and is not affected by reverse causation.Methods and findings: Genetic markers associated with obesity measures, blood pressure, lipids, type 2 diabetes, insulin, and glucose were initially identified as instrumental variables, and their association with RCC risk was subsequently evaluated in a genome-wide association study (GWAS) of 10,784 RCC patients and 20,406 control participants in a 2-sample MR framework. The effect on RCC risk was estimated by calculating odds ratios (ORSD) for a standard deviation (SD) increment in each risk factor. The MR analysis indicated that higher body mass index increases the risk of RCC (ORSD: 1.56, 95% confidence interval [CI] 1.44–1.70), with comparable results for waist-to-hip ratio (ORSD: 1.63, 95% CI 1.40–1.90) and body fat percentage (ORSD: 1.66, 95% CI 1.44–1.90). This analysis further indicated that higher fasting insulin (ORSD: 1.82, 95% CI 1.30–2.55) and diastolic blood pressure (DBP; ORSD: 1.28, 95% CI 1.11–1.47), but not systolic blood pressure (ORSD: 0.98, 95% CI 0.84–1.14), increase the risk for RCC. No association with RCC risk was seen for lipids, overall type 2 diabetes, or fasting glucose.Conclusions: This study provides novel evidence for an etiological role of insulin in RCC, as well as confirmatory evidence that obesity and DBP influence RCC risk.
  •  
7.
  • Murphy, Neil, et al. (författare)
  • Associations between Glycemic Traits and Colorectal Cancer : A Mendelian Randomization Analysis
  • 2022
  • Ingår i: Journal of the National Cancer Institute. - : Oxford University Press (OUP). - 0027-8874 .- 1460-2105. ; 114:5, s. 740-752
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Glycemic traits - such as hyperinsulinemia, hyperglycemia, and type 2 diabetes - have been associated with higher colorectal cancer risk in observational studies; however, causality of these associations is uncertain. We used Mendelian randomization (MR) to estimate the causal effects of fasting insulin, 2-hour glucose, fasting glucose, glycated hemoglobin (HbA1c), and type 2 diabetes with colorectal cancer. Methods: Genome-wide association study summary data were used to identify genetic variants associated with circulating levels of fasting insulin (n = 34), 2-hour glucose (n = 13), fasting glucose (n = 70), HbA1c (n = 221), and type 2 diabetes (n = 268). Using 2-sample MR, we examined these variants in relation to colorectal cancer risk (48 214 case patient and 64 159 control patients). Results: In inverse-variance models, higher fasting insulin levels increased colorectal cancer risk (odds ratio [OR] per 1-SD = 1.65, 95% confidence interval [CI] = 1.15 to 2.36). We found no evidence of any effect of 2-hour glucose (OR per 1-SD = 1.02, 95% CI = 0.86 to 1.21) or fasting glucose (OR per 1-SD = 1.04, 95% CI = 0.88 to 1.23) concentrations on colorectal cancer risk. Genetic liability to type 2 diabetes (OR per 1-unit increase in log odds = 1.04, 95% CI = 1.01 to 1.07) and higher HbA1c levels (OR per 1-SD = 1.09, 95% CI = 1.00 to 1.19) increased colorectal cancer risk, although these findings may have been biased by pleiotropy. Higher HbA1c concentrations increased rectal cancer risk in men (OR per 1-SD = 1.21, 95% CI = 1.05 to 1.40), but not in women. Conclusions: Our results support a causal effect of higher fasting insulin, but not glucose traits or type 2 diabetes, on increased colorectal cancer risk. This suggests that pharmacological or lifestyle interventions that lower circulating insulin levels may be beneficial in preventing colorectal tumorigenesis.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy