SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Carsin Anne Elie) ;pers:(Jarvis Deborah)"

Sökning: WFRF:(Carsin Anne Elie) > Jarvis Deborah

  • Resultat 1-10 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Accordini, Simone, et al. (författare)
  • Incidence trends of airflow obstruction among European adults without asthma : a 20-year cohort study
  • 2020
  • Ingår i: Scientific Reports. - : NATURE PUBLISHING GROUP. - 2045-2322. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Investigating COPD trends may help healthcare providers to forecast future disease burden. We estimated sex- and smoking-specific incidence trends of pre-bronchodilator airflow obstruction (AO) among adults without asthma from 11 European countries within a 20-year follow-up (ECRHS and SAPALDIA cohorts). We also quantified the extent of misclassification in the definition based on pre-bronchodilator spirometry (using post-bronchodilator measurements from a subsample of subjects) and we used this information to estimate the incidence of post-bronchodilator AO (AO(post-BD)), which is the primary characteristic of COPD. AO incidence was 4.4 (95% CI: 3.5-5.3) male and 3.8 (3.1-4.6) female cases/1,000/year. Among ever smokers (median pack-years: 20, males; 12, females), AO incidence significantly increased with ageing in men only [incidence rate ratio (IRR), 1-year increase: 1.05 (1.03-1.07)]. A strong exposure-response relationship with smoking was found both in males [IRR, 1-pack-year increase: 1.03 (1.02-1.04)] and females [1.03 (1.02-1.05)]. The positive predictive value of AO for AO(post-BD) was 59.1% (52.0-66.2%) in men and 42.6% (35.1-50.1%) in women. AO(post-BD) incidence was 2.6 (1.7-3.4) male and 1.6 (1.0-2.2) female cases/1,000/year. AO incidence was considerable in Europe and the sex-specific ageing-related increase among ever smokers was strongly related to cumulative tobacco exposure. AO(post-BD) incidence is expected to be half of AO incidence.
  •  
4.
  • Adam, Martin, et al. (författare)
  • Adult lung function and long-term air pollution exposure. ESCAPE : a multicentre cohort study and meta-analysis
  • 2015
  • Ingår i: European Respiratory Journal. - : European Respiratory Society (ERS). - 0903-1936 .- 1399-3003. ; 41:5, s. 38-50
  • Tidskriftsartikel (refereegranskat)abstract
    • The chronic impact of ambient air pollutants on lung function in adults is not fully understood. The objective of this study was to investigate the association of long-term exposure to ambient air pollution with lung function in adult participants from five cohorts in the European Study of Cohorts for Air Pollution Effects (ESCAPE). Residential exposure to nitrogen oxides (NO2, NOx) and particulate matter (PM) was modelled and traffic indicators were assessed in a standardised manner. The spirometric parameters forced expiratory volume in 1 s (FEV1) and forced vital capacity (FVC) from 7613 subjects were considered as outcomes. Cohort-specific results were combined using meta-analysis. We did not observe an association of air pollution with longitudinal change in lung function, but we observed that a 10 μg·m(-3) increase in NO2 exposure was associated with lower levels of FEV1 (-14.0 mL, 95%CI -25.8- -2.1) and FVC (-14.9 mL, 95% CI -28.7- -1.1). An increase of 10 μg·m(-3) in PM10, but not other PM metrics (PM2.5, coarse fraction of PM, PM absorbance), was associated with a lower level of FEV1 (-44.6 mL, 95% CI -85.4- -3.8) and FVC (-59.0 mL, 95% CI -112.3- -5.6). The associations were particularly strong in obese persons. This study adds to the evidence for an adverse association of ambient air pollution with lung function in adults at very low levels in Europe.
  •  
5.
  • Bedard, Annabelle, et al. (författare)
  • Physical activity and lung function-Cause or consequence?
  • 2020
  • Ingår i: PLOS ONE. - : PUBLIC LIBRARY SCIENCE. - 1932-6203. ; 15:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Concerns exist that the positive association of physical activity with better lung function, which has been suggested in previous longitudinal studies in smokers, is due to reverse causation. To investigate this, we applied structural equation modeling (SEM), an exploratory approach, and marginal structural modeling (MSM), an approach from the causal inference framework that corrects for reverse causation and time-dependent confounding and estimates causal effects, on data from participants in the European Community Respiratory Health Survey (ECRHS, a multicentre European cohort study initiated in 1991-1993 with ECRHS I, and with two follow-ups: ECRHS II in 1999-2003, and ECRHS III in 2010-2014). 753 subjects who reported current smoking at ECRHS II, with repeated data on lung function at ECRHS I, II and III, physical activity at ECRHS II and III, and potential confounders at ECRHS I and II, were included in the analyses. SEM showed positive associations between physical activity and lung function in both directions. MSM suggested a protectivecausaleffect of physical activity on lung function (overall difference in mean beta (95% CI), comparing active versus non-active individuals: 58 mL (21-95) for forced expiratory volume in one second and 83 mL (36-130) for forced vital capacity). Our results suggest bi-directional causation and support a true protective effect of physical activity on lung function in smokers, after accounting for reverse causation and time-dependent confounding.
  •  
6.
  • Burte, Emilie, et al. (författare)
  • Association between air pollution and rhinitis incidence in two European cohorts
  • 2018
  • Ingår i: Environment International. - : Elsevier. - 0160-4120 .- 1873-6750. ; 115, s. 257-266
  • Tidskriftsartikel (refereegranskat)abstract
    • The association between air pollution and rhinitis is not well established.Aim: The aim of this longitudinal analysis was to study the association between modeled air pollution at the subjects' home addresses and self-reported incidence of rhinitis.Methods: We used data from 1533 adults from two multicentre cohorts' studies (EGEA and ECRHS). Rhinitis incidence was defined as reporting rhinitis at the second follow-up (2011 to 2013) but not at the first follow-up (2000 to 2007). Annual exposure to NO2, PM10 and PM2.5 at the participants' home addresses was estimated using land-use regression models developed by the ESCAPE project for the 2009-2010 period. Incidence rate ratios (IRR) were computed using Poisson regression. Pooled analysis, analyses by city and meta-regression testing for heterogeneity were carried out.Results: No association between long-term air pollution exposure and incidence of rhinitis was found (adjusted IRR (aIRR) for an increase of 10 mu g center dot m(-3) of NO2: 1.00 [0.91-1.09], for an increase of 5 mu g center dot m(-3) of PM2.5: 0.88 [0.73-1.04]). Similar results were found in the two-pollutant model (aIRR for an increase of 10 mu g center dot m(-3) of NO2: 1.01 [0.87-1.17], for an increase of 5 mu g center dot m(-3) of PM2.5: 0.87 [0.68-1.08]). Results differed depending on the city, but no regional pattern emerged for any of the pollutants.Conclusions: This study did not find any consistent evidence of an association between long-term air pollution and incident rhinitis.
  •  
7.
  • Burte, Emilie, et al. (författare)
  • Long-term air pollution exposure is associated with increased severity of rhinitis in 2 European cohorts
  • 2020
  • Ingår i: Journal of Allergy and Clinical Immunology. - : Elsevier. - 0091-6749 .- 1097-6825. ; 145:3, s. 834-842.e6
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Very few studies have examined the association between long-term outdoor air pollution and rhinitis severity in adults.OBJECTIVE: We sought to assess the cross-sectional association between individual long-term exposure to air pollution and severity of rhinitis.METHODS: Participants with rhinitis from 2 multicenter European cohorts (Epidemiological Study on the Genetics and Environment on Asthma and the European Community Respiratory Health Survey) were included. Annual exposure to NO2, PM10, PM2.5, and PMcoarse (calculated by subtracting PM2.5 from PM10) was estimated using land-use regression models derived from the European Study of Cohorts for Air Pollution Effects project, at the participants' residential address. The score of rhinitis severity (range, 0-12), based on intensity of disturbance due to symptoms reported by questionnaire, was categorized into low (reference), mild, moderate, and high severity. Polytomous logistic regression models with a random intercept for city were used.RESULTS: A total of 1408 adults with rhinitis (mean age, 52 years; 46% men, 81% from the European Community Respiratory Health Survey) were included. The median (1st quartile-3rd quartile) score of rhinitis severity was 4 (2-6). Higher exposure to PM10 was associated with higher rhinitis severity (adjusted odds ratio [95% CI] for a 10 μg/m3 increase in PM10: for mild: 1.20 [0.88-1.64], moderate: 1.53 [1.07-2.19], and high severity: 1.72 [1.23-2.41]). Similar results were found for PM2.5. Higher exposure to NO2 was associated with an increased severity of rhinitis, with similar adjusted odds ratios whatever the level of severity. Adjusted odds ratios were higher among participants without allergic sensitization than among those with, but interaction was found only for NO2. CONCLUSIONS: People with rhinitis who live in areas with higher levels of pollution are more likely to report more severe nasal symptoms. Further work is required to elucidate the mechanisms of this association.
  •  
8.
  • Fuertes, Elaine, et al. (författare)
  • Leisure-time vigorous physical activity is associated with better lung function : the prospective ECRHS study
  • 2018
  • Ingår i: Thorax. - : BMJ Publishing Group Ltd. - 0040-6376 .- 1468-3296. ; 73:4, s. 376-384
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: We assessed associations between physical activity and lung function, and its decline, in the prospective population-based European Community Respiratory Health Survey cohort. Methods: FEV1 and FVC were measured in 3912 participants at 27-57 years and 39-67 years (mean time between examinations= 11.1 years). Physical activity frequency and duration were assessed using questionnaires and used to identify active individuals (physical activity >= 2 times and >= 1 hour per week) at each examination. Adjusted mixed linear regression models assessed associations of regular physical activity with FEV1 and FVC. Results: Physical activity frequency and duration increased over the study period. In adjusted models, active individuals at the first examination had higher FEV1 (43.6 mL (95% CI 12.0 to 75.1)) and FVC (53.9 mL (95% CI 17.8 to 89.9)) at both examinations than their non-active counterparts. These associations appeared restricted to current smokers. In the whole population, FEV1 and FVC were higher among those who changed from inactive to active during the follow-up (38.0 mL (95% CI 15.8 to 60.3) and 54.2 mL (95% CI 25.1 to 83.3), respectively) and who were consistently active, compared with those consistently non-active. No associations were found for lung function decline. Conclusion: Leisure-time vigorous physical activity was associated with higher FEV1 and FVC over a 10-year period among current smokers, but not with FEV1 and FVC decline.
  •  
9.
  • Jacquemin, Benedicte, et al. (författare)
  • Ambient Air Pollution and Adult Asthma Incidence in Six European Cohorts (ESCAPE)
  • 2015
  • Ingår i: Journal of Environmental Health Perspectives. - : Environmental Health Perspectives. - 0091-6765 .- 1552-9924. ; 123:6, s. 613-621
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Short-term exposure to air pollution has adverse effects among patients with asthma, but whether long-term exposure to air pollution is a cause of adult-onset asthma is unclear. OBJECTIVE: We aimed to investigate the association between air pollution and adult onset asthma. METHODS: Asthma incidence was prospectively assessed in six European cohorts. Exposures studied were annual average concentrations at home addresses for nitrogen oxides assessed for 23,704 participants (including 1,257 incident cases) and particulate matter (PM) assessed for 17,909 participants through ESCAPE land-use regression models and traffic exposure indicators. Meta-analyses of cohort-specific logistic regression on asthma incidence were performed. Models were adjusted for age, sex, overweight, education, and smoking and included city/area within each cohort as a random effect. RESULTS: In this longitudinal analysis, asthma incidence was positively, but not significantly, associated with all exposure metrics, except for PMcoarse. Positive associations of borderline significance were observed for nitrogen dioxide [adjusted odds ratio (OR) = 1.10; 95% CI: 0.99, 1.21 per 10 mu g/m(3); p = 0.10] and nitrogen oxides (adjusted OR = 1.04; 95% CI: 0.99, 1.08 per 20 mu g/m(3); p = 0.08). Nonsignificant positive associations were estimated for PM10 (adjusted OR = 1.04; 95% CI: 0.88, 1.23 per 10 mu g/m(3)), PM2.5 (adjusted OR = 1.04; 95% CI: 0.88, 1.23 per 5 mu g/m(3)), PM2.5absorbance (adjusted OR = 1.06; 95% CI: 0.95, 1.19 per 10(-5)/m), traffic load (adjusted OR = 1.10; 95% CI: 0.93, 1.30 per 4 million vehicles x meters/day on major roads in a 100-m buffer), and traffic intensity (adjusted OR = 1.10; 95% CI: 0.93, 1.30 per 5,000 vehicles/day on the nearest road). A nonsignificant negative association was estimated for PMcoarse (adjusted OR = 0.98; 95% CI: 0.87, 1.14 per 5 mu g/m(3)). CONCLUSIONS: Results suggest a deleterious effect of ambient air pollution on asthma incidence in adults. Further research with improved personal-level exposure assessment (vs. residential exposure assessment only) and phenotypic characterization is needed.
  •  
10.
  • Kirkeleit, Jorunn, et al. (författare)
  • Early life exposures contributing to accelerated lung function decline in adulthood – a follow-up study of 11,000 adults from the general population
  • 2023
  • Ingår i: eClinicalMedicine. - : Elsevier. - 2589-5370. ; 66
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: We aimed to assess whether exposure to risk factors in early life from conception to puberty continue to contribute to lung function decline later in life by using a pooled cohort comprising approx. 11,000 adults followed for more than 20 years and with up to three lung function measurements. Methods: Participants (20–68 years) in the ECRHS and NFBC1966 cohort studies followed in the periods 1991–2013 and 1997–2013, respectively, were included. Mean annual decline in maximum forced expired volume in 1 s (FEV1) and forced vital capacity (FVC) were main outcomes. Associations between early life risk factors and change in lung function were estimated using mixed effects linear models adjusted for sex, age, FEV1, FVC and height at baseline, accounting for personal smoking. Findings: Decline in lung function was accelerated in participants with mothers that smoked during pregnancy (FEV1 2.3 ml/year; 95% CI: 0.7, 3.8) (FVC 2.2 ml/year; 0.2, 4.2), with asthmatic mothers (FEV1 2.6 ml/year; 0.9, 4.4) (FEV1/FVC 0.04 per year; 0.04, 0.7) and asthmatic fathers (FVC 2.7 ml/year; 0.5, 5.0), and in women with early menarche (FVC 2.4 ml/year; 0.4, 4.4). Personal smoking of 10 pack-years contributed to a decline of 2.1 ml/year for FEV1 (1.8, 2.4) and 1.7 ml/year for FVC (1.3, 2.1). Severe respiratory infections in early childhood were associated with accelerated decline among ever-smokers. No effect-modification by personal smoking, asthma symptoms, sex or cohort was found. Interpretation: Mothers’ smoking during pregnancy, parental asthma and early menarche may contribute to a decline of FEV1 and FVC later in life comparable to smoking 10 pack-years. Funding: European Union's Horizon 2020; Research Council of Norway; Academy of Finland; University Hospital Oulu; European Regional Development Fund; Spanish Ministry of Science and Innovation; Generalitat de Catalunya.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy