SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Carvalho J.) ;lar1:(slu)"

Sökning: WFRF:(Carvalho J.) > Sveriges Lantbruksuniversitet

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Hyde, K. D., et al. (författare)
  • Global consortium for the classification of fungi and fungus-like taxa
  • 2023
  • Ingår i: MYCOSPHERE. - : Mushroom Research Foundation. - 2077-7000 .- 2077-7019. ; 14:1, s. 1960-2012
  • Tidskriftsartikel (refereegranskat)abstract
    • The Global Consortium for the Classification of Fungi and fungus-like taxa is an international initiative of more than 550 mycologists to develop an electronic structure for the classification of these organisms. The members of the Consortium originate from 55 countries/regions worldwide, from a wide range of disciplines, and include senior, mid-career and early-career mycologists and plant pathologists. The Consortium will publish a biannual update of the Outline of Fungi and fungus-like taxa, to act as an international scheme for other scientists. Notes on all newly published taxa at or above the level of species will be prepared and published online on the Outline of Fungi website (https://www.outlineoffungi.org/), and these will be finally published in the biannual edition of the Outline of Fungi and fungus-like taxa. Comments on recent important taxonomic opinions on controversial topics will be included in the biannual outline. For example, 'to promote a more stable taxonomy in Fusarium given the divergences over its generic delimitation', or 'are there too many genera in the Boletales?' and even more importantly, 'what should be done with the tremendously diverse 'dark fungal taxa?' There are undeniable differences in mycologists' perceptions and opinions regarding species classification as well as the establishment of new species. Given the pluralistic nature of fungal taxonomy and its implications for species concepts and the nature of species, this consortium aims to provide a platform to better refine and stabilise fungal classification, taking into consideration views from different parties. In the future, a confidential voting system will be set up to gauge the opinions of all mycologists in the Consortium on important topics. The results of such surveys will be presented to the International Commission on the Taxonomy of Fungi (ICTF) and the Nomenclature Committee for Fungi (NCF) with opinions and percentages of votes for and against. Criticisms based on scientific evidence with regards to nomenclature, classifications, and taxonomic concepts will be welcomed, and any recommendations on specific taxonomic issues will also be encouraged; however, we will encourage professionally and ethically responsible criticisms of others' work. This biannual ongoing project will provide an outlet for advances in various topics of fungal classification, nomenclature, and taxonomic concepts and lead to a community-agreed classification scheme for the fungi and fungus-like taxa. Interested parties should contact the lead author if they would like to be involved in future outlines.
  •  
3.
  • Hudson, Lawrence N, et al. (författare)
  • The database of the PREDICTS (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems) project
  • 2017
  • Ingår i: Ecology and Evolution. - : John Wiley & Sons. - 2045-7758. ; 7:1, s. 145-188
  • Tidskriftsartikel (refereegranskat)abstract
    • The PREDICTS project-Projecting Responses of Ecological Diversity In Changing Terrestrial Systems (www.predicts.org.uk)-has collated from published studies a large, reasonably representative database of comparable samples of biodiversity from multiple sites that differ in the nature or intensity of human impacts relating to land use. We have used this evidence base to develop global and regional statistical models of how local biodiversity responds to these measures. We describe and make freely available this 2016 release of the database, containing more than 3.2 million records sampled at over 26,000 locations and representing over 47,000 species. We outline how the database can help in answering a range of questions in ecology and conservation biology. To our knowledge, this is the largest and most geographically and taxonomically representative database of spatial comparisons of biodiversity that has been collated to date; it will be useful to researchers and international efforts wishing to model and understand the global status of biodiversity.
  •  
4.
  • Hudson, Lawrence N., et al. (författare)
  • The PREDICTS database : a global database of how local terrestrial biodiversity responds to human impacts
  • 2014
  • Ingår i: Ecology and Evolution. - : Wiley. - 2045-7758. ; 4:24, s. 4701-4735
  • Tidskriftsartikel (refereegranskat)abstract
    • Biodiversity continues to decline in the face of increasing anthropogenic pressures such as habitat destruction, exploitation, pollution and introduction of alien species. Existing global databases of species' threat status or population time series are dominated by charismatic species. The collation of datasets with broad taxonomic and biogeographic extents, and that support computation of a range of biodiversity indicators, is necessary to enable better understanding of historical declines and to project - and avert - future declines. We describe and assess a new database of more than 1.6 million samples from 78 countries representing over 28,000 species, collated from existing spatial comparisons of local-scale biodiversity exposed to different intensities and types of anthropogenic pressures, from terrestrial sites around the world. The database contains measurements taken in 208 (of 814) ecoregions, 13 (of 14) biomes, 25 (of 35) biodiversity hotspots and 16 (of 17) megadiverse countries. The database contains more than 1% of the total number of all species described, and more than 1% of the described species within many taxonomic groups - including flowering plants, gymnosperms, birds, mammals, reptiles, amphibians, beetles, lepidopterans and hymenopterans. The dataset, which is still being added to, is therefore already considerably larger and more representative than those used by previous quantitative models of biodiversity trends and responses. The database is being assembled as part of the PREDICTS project (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems - ). We make site-level summary data available alongside this article. The full database will be publicly available in 2015.
  •  
5.
  • Kattge, Jens, et al. (författare)
  • TRY plant trait database - enhanced coverage and open access
  • 2020
  • Ingår i: Global Change Biology. - : Wiley-Blackwell. - 1354-1013 .- 1365-2486. ; 26:1, s. 119-188
  • Tidskriftsartikel (refereegranskat)abstract
    • Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives.
  •  
6.
  • Kehoe, Laura, et al. (författare)
  • Make EU trade with Brazil sustainable
  • 2019
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 364:6438, s. 341-
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)
  •  
7.
  • Stone, D., et al. (författare)
  • A method of establishing a transect for biodiversity and ecosystem function monitoring across Europe
  • 2016
  • Ingår i: Applied Soil Ecology. - : Elsevier BV. - 0929-1393 .- 1873-0272. ; 97, s. 3-11
  • Tidskriftsartikel (refereegranskat)abstract
    • The establishment of the range of soil biodiversity found within European soils is needed to guide EU policy development regarding the protection of soil. Such a base-line should be collated from a wide-ranging sampling campaign to ensure that soil biodiversity from the majority of soil types, land-use or management systems, and European climatic (bio-geographical zones) were included. This paper reports the design and testing of a method to achieve the large scale sampling associated with the establishment of such a baseline, carried out within the remit of the EcoFINDERS project, and outlines points to consider when such a task is undertaken. Applying a GIS spatial selection process, a sampling campaign was undertaken by 13 EcoFINDERS partners across 11 countries providing data on the range of indicators of biodiversity and ecosystem functions including; micro and meso fauna biodiversity, extracellular enzyme activity, PLEA and community level physiological profiling (MicroResp (TM) and Biolog (TM)). Physical, chemical and bio-geographical parameters of the 81 sites sampled were used to determine whether the model predicted a wide enough range of sites to allow assessment of the biodiversity indicators tested. Discrimination between the major bio-geographical zones of Atlantic and Continental was possible for all land-use types. Boreal and Alpine zones only allowed discrimination in the most common land-use type for that area e.g. forestry and grassland sites, respectively, while the Mediterranean zone did not have enough sites sampled to draw conclusions across all land-use types. The method used allowed the inclusion of a range of land-uses in both the model prediction stage and the final sites sampled. The establishment of the range of soil biodiversity across Europe is possible, though a larger targeted campaign is recommended. The techniques applied within the EcoFINDERS sampling would be applicable to a larger campaign. (C) 2015 Elsevier B.V. All rights reserved.
  •  
8.
  • Moss, Brian D., et al. (författare)
  • Climate change and the future of freshwater biodiversity in Europe : a primer for policy-makers
  • 2009
  • Ingår i: Freshwater Reviews. - : Freshwater Biological Association. - 1755-084X. ; 2:2, s. 103-130
  • Tidskriftsartikel (refereegranskat)abstract
    • Earth's climate is changing, and by the end of the 21st century in Europe, average temperatures are likely to have risen by at least 2 °C, and more likely 4 °C with associated effects on patterns of precipitation and the frequency of extreme weather events. Attention among policy-makers is divided about how to minimise the change, how to mitigate its effects, how to maintain the natural resources on which societies depend and how to adapt human societies to the changes. Natural systems are still seen, through a long tradition of conservation management that is largely species-based, as amenable to adaptive management, and biodiversity, mostly perceived as the richness of plant and vertebrate communities, often forms a focus for planning. We argue that prediction of particular species changes will be possible only in a minority of cases but that prediction of trends in general structure and operation of four generic freshwater ecosystems (erosive rivers, depositional floodplain rivers, shallow lakes and deep lakes) in three broad zones of Europe (Mediterranean, Central and Arctic-Boreal) is practicable. Maintenance and rehabilitation of ecological structures and operations will inevitably and incidentally embrace restoration of appropriate levels of species biodiversity. Using expert judgement, based on an extensive literature, we have outlined, primarily for lay policy makers, the pristine features of these systems, their states under current human impacts, how these states are likely to alter with a warming of 2 °C to 4 °C and what might be done to mitigate this. We have avoided technical terms in the interests of communication, and although we have included full referencing as in academic papers, we have eliminated degrees of detail that could confuse broad policy-making 
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8
Typ av publikation
tidskriftsartikel (8)
Typ av innehåll
refereegranskat (7)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Barlow, Jos (4)
Jung, Martin (3)
Tscharntke, Teja (3)
Li, Y. (2)
Wang, K. (2)
Zhang, H. (2)
visa fler...
Kumar, S (2)
Zhang, Y. (2)
Hylander, Kristoffer (2)
Singh, R. (2)
Wang, Y. (2)
Li, Q. (2)
Zhang, W. (2)
Yang, J. (2)
Liu, F. (2)
Abrahamczyk, Stefan (2)
Jonsell, Mats (2)
Chen, Q. (2)
Brunet, Jörg (2)
Kolb, Annette (2)
Sáfián, Szabolcs (2)
Berg, Åke (2)
Entling, Martin H. (2)
Goulson, Dave (2)
Herzog, Felix (2)
Knop, Eva (2)
Aizen, Marcelo A. (2)
Petanidou, Theodora (2)
Stout, Jane C. (2)
Woodcock, Ben A. (2)
Poveda, Katja (2)
Batáry, Péter (2)
Edenius, Lars (2)
Jakobsson, J. (2)
Schweiger, Oliver (2)
Baeten, Lander (2)
Cao, B. (2)
Slade, Eleanor M. (2)
Mikusinski, Grzegorz (2)
Felton, Annika (2)
Samnegård, Ulrika (2)
Berenguer, Erika (2)
Ficetola, Gentile F. (2)
Yu, Douglas W. (2)
Sadler, Jonathan P. (2)
Purvis, Andy (2)
Ammer, Christian (2)
Richardson, Michael ... (2)
Valladares, Fernando (2)
Banks, John E. (2)
visa färre...
Lärosäte
Stockholms universitet (4)
Umeå universitet (3)
Göteborgs universitet (2)
Uppsala universitet (2)
visa fler...
Kungliga Tekniska Högskolan (1)
Linköpings universitet (1)
Mittuniversitetet (1)
Chalmers tekniska högskola (1)
Linnéuniversitetet (1)
Karlstads universitet (1)
Karolinska Institutet (1)
visa färre...
Språk
Engelska (8)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (8)
Lantbruksvetenskap (3)
Teknik (1)
Medicin och hälsovetenskap (1)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy