SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Casar Borota Olivera) ;pers:(Klar Joakim)"

Sökning: WFRF:(Casar Borota Olivera) > Klar Joakim

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Klar, Joakim, et al. (författare)
  • Welander Distal Myopathy Caused by an Ancient Founder Mutation in TIA1 Associated with Perturbed Splicing.
  • 2013
  • Ingår i: Human Mutation. - : Hindawi Limited. - 1059-7794 .- 1098-1004. ; 34:4, s. 572-577
  • Tidskriftsartikel (refereegranskat)abstract
    • Welander distal myopathy (WDM) is an adult onset autosomal dominant disorder characterized by distal limb weakness which progresses slowly from the fifth decade. All WDM patients are of Swedish or Finnish descent and share a rare chromosome 2p13 haplotype. We restricted the WDM associated haplotype followed by whole exome sequencing. Within the conserved haplotype we identified a single heterozygous mutation c.1150G>A (p.E384K) in TIA1 in all WDM patients investigated (n = 43). The TIA1 protein regulates splicing and translation through direct interaction with mRNA and the p.E384K mutation is located in the C-terminal Q-rich domain that interacts with the U1-C splicing factor. TIA1 has been shown to prevent skipping of SMN2 exon 7 and we show that WDM patients have increased levels of spliced SMN2 in skeletal muscle cells when compared to controls. Immunostaining of WDM muscle biopsies showed accumulation of TIA1 and stress granulae proteins adjacent to intracellular inclusions, a typical finding in WDM. The combined findings strongly suggest that the TIA1 mutation causes perturbed RNA splicing and cellular stress resulting in WDM. The selection against the mutation is likely to be negligible and the age of the TIA1 founder mutation was calculated to approximately 1050 years, which coincides with the epoch of early seafaring across the Baltic Sea.
  •  
2.
  • Wilbe, Maria, et al. (författare)
  • MuSK : a new target for lethal fetal akinesia deformation sequence (FADS).
  • 2015
  • Ingår i: Journal of Medical Genetics. - : BMJ. - 0022-2593 .- 1468-6244. ; 52:3, s. 195-202
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Fetal akinesia deformation sequence syndrome (FADS, OMIM 208150) is characterised by decreased fetal movement (fetal akinesia) as well as intrauterine growth restriction, arthrogryposis, and developmental anomalies (eg, cystic hygroma, pulmonary hypoplasia, cleft palate, and cryptorchidism). Mutations in components of the acetylcholine receptor (AChR) pathway have previously been associated with FADS.METHODS AND RESULTS: We report on a family with recurrent fetal loss, where the parents had five affected fetuses/children with FADS and one healthy child. The fetuses displayed no fetal movements from the gestational age of 17 weeks, extended knee joints, flexed hips and elbows, and clenched hands. Whole exome sequencing of one affected fetus and the parents was performed. A novel homozygous frameshift mutation was identified in muscle, skeletal receptor tyrosine kinase (MuSK), c.40dupA, which segregated with FADS in the family. Haplotype analysis revealed a conserved haplotype block suggesting a founder mutation. MuSK (muscle-specific tyrosine kinase receptor), a component of the AChR pathway, is a main regulator of neuromuscular junction formation and maintenance. Missense mutations in MuSK have previously been reported to cause congenital myasthenic syndrome (CMS) associated with AChR deficiency.CONCLUSIONS: To our knowledge, this is the first report showing that a mutation in MuSK is associated with FADS. The results support previous findings that CMS and/or FADS are caused by complete or severe functional disruption of components located in the AChR pathway. We propose that whereas milder mutations of MuSK will cause a CMS phenotype, a complete loss is lethal and will cause FADS.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy