SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Cauley J. A.) ;pers:(Lorentzon Mattias 1970)"

Sökning: WFRF:(Cauley J. A.) > Lorentzon Mattias 1970

  • Resultat 1-10 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Zillikens, M. C., et al. (författare)
  • Large meta-analysis of genome-wide association studies identifies five loci for lean body mass
  • 2017
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 8:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Lean body mass, consisting mostly of skeletal muscle, is important for healthy aging. We performed a genome-wide association study for whole body (20 cohorts of European ancestry with n = 38,292) and appendicular (arms and legs) lean body mass (n = 28,330) measured using dual energy X-ray absorptiometry or bioelectrical impedance analysis, adjusted for sex, age, height, and fat mass. Twenty-one single-nucleotide polymorphisms were significantly associated with lean body mass either genome wide (p < 5 x 10(-8)) or suggestively genome wide (p < 2.3 x 10(-6)). Replication in 63,475 (47,227 of European ancestry) individuals from 33 cohorts for whole body lean body mass and in 45,090 (42,360 of European ancestry) subjects from 25 cohorts for appendicular lean body mass was successful for five single-nucleotide polymorphisms in/ near HSD17B11, VCAN, ADAMTSL3, IRS1, and FTO for total lean body mass and for three single-nucleotide polymorphisms in/ near VCAN, ADAMTSL3, and IRS1 for appendicular lean body mass. Our findings provide new insight into the genetics of lean body mass.
  •  
2.
  • Karasik, D., et al. (författare)
  • Disentangling the genetics of lean mass
  • 2019
  • Ingår i: American Journal of Clinical Nutrition. - : Elsevier BV. - 0002-9165 .- 1938-3207. ; 109:2, s. 276-287
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Lean body mass (LM) plays an important role in mobility and metabolic function. We previously identified five loci associated with LM adjusted for fat mass in kilograms. Such an adjustment may reduce the power to identify genetic signals having an association with both lean mass and fat mass. Objectives: To determine the impact of different fat mass adjustments on genetic architecture of LM and identify additional LM loci. Methods: We performed genome-wide association analyses for whole-body LM (20 cohorts of European ancestry with n = 38,292) measured using dual-energy X-ray absorptiometry) or bioelectrical impedance analysis, adjusted for sex, age, age(2), and height with or without fat mass adjustments (Model 1 no fat adjustment; Model 2 adjustment for fat mass as a percentage of body mass; Model 3 adjustment for fat mass in kilograms). Results: Seven single-nucleotide polymorphisms (SNPs) in separate loci, including one novel LM locus (TNRC6B), were successfully replicated in an additional 47,227 individuals from 29 cohorts. Based on the strengths of the associations in Model 1 vs Model 3, we divided the LM loci into those with an effect on both lean mass and fat mass in the same direction and refer to those as "sumo wrestler" loci (FTO and MC4R). In contrast, loci with an impact specifically on LMwere termed "body builder" loci (VCAN and ADAMTSL3). Using existing available genome-wide association study databases, LM increasing alleles of SNPs in sumo wrestler loci were associated with an adverse metabolic profile, whereas LM increasing alleles of SNPs in "body builder" loci were associated with metabolic protection. Conclusions: In conclusion, we identified one novel LM locus (TNRC6B). Our results suggest that a genetically determined increase in lean mass might exert either harmful or protective effects on metabolic traits, depending on its relation to fat mass.
  •  
3.
  • Vandenput, Liesbeth, 1974, et al. (författare)
  • Update of the fracture risk prediction tool FRAX : a systematic review of potential cohorts and analysis plan
  • 2022
  • Ingår i: Osteoporosis International. - : Springer. - 0937-941X .- 1433-2965. ; 33:10, s. 2103-2136
  • Forskningsöversikt (refereegranskat)abstract
    • Summary: We describe the collection of cohorts together with the analysis plan for an update of the fracture risk prediction tool FRAX with respect to current and novel risk factors. The resource comprises 2,138,428 participants with a follow-up of approximately 20 million person-years and 116,117 documented incident major osteoporotic fractures.Introduction: The availability of the fracture risk assessment tool FRAX® has substantially enhanced the targeting of treatment to those at high risk of fracture with FRAX now incorporated into more than 100 clinical osteoporosis guidelines worldwide. The aim of this study is to determine whether the current algorithms can be further optimised with respect to current and novel risk factors.Methods: A computerised literature search was performed in PubMed from inception until May 17, 2019, to identify eligible cohorts for updating the FRAX coefficients. Additionally, we searched the abstracts of conference proceedings of the American Society for Bone and Mineral Research, European Calcified Tissue Society and World Congress of Osteoporosis. Prospective cohort studies with data on baseline clinical risk factors and incident fractures were eligible.Results: Of the 836 records retrieved, 53 were selected for full-text assessment after screening on title and abstract. Twelve cohorts were deemed eligible and of these, 4 novel cohorts were identified. These cohorts, together with 60 previously identified cohorts, will provide the resource for constructing an updated version of FRAX comprising 2,138,428 participants with a follow-up of approximately 20 million person-years and 116,117 documented incident major osteoporotic fractures. For each known and candidate risk factor, multivariate hazard functions for hip fracture, major osteoporotic fracture and death will be tested using extended Poisson regression. Sex- and/or ethnicity-specific differences in the weights of the risk factors will be investigated. After meta-analyses of the cohort-specific beta coefficients for each risk factor, models comprising 10-year probability of hip and major osteoporotic fracture, with or without femoral neck bone mineral density, will be computed.Conclusions: These assembled cohorts and described models will provide the framework for an updated FRAX tool enabling enhanced assessment of fracture risk (PROSPERO (CRD42021227266)).
  •  
4.
  • Estrada, Karol, et al. (författare)
  • Genome-wide meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with risk of fracture.
  • 2012
  • Ingår i: Nature genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 44:5, s. 491-501
  • Tidskriftsartikel (refereegranskat)abstract
    • Bone mineral density (BMD) is the most widely used predictor of fracture risk. We performed the largest meta-analysis to date on lumbar spine and femoral neck BMD, including 17 genome-wide association studies and 32,961 individuals of European and east Asian ancestry. We tested the top BMD-associated markers for replication in 50,933 independent subjects and for association with risk of low-trauma fracture in 31,016 individuals with a history of fracture (cases) and 102,444 controls. We identified 56 loci (32 new) associated with BMD at genome-wide significance (P < 5 × 10(-8)). Several of these factors cluster within the RANK-RANKL-OPG, mesenchymal stem cell differentiation, endochondral ossification and Wnt signaling pathways. However, we also discovered loci that were localized to genes not known to have a role in bone biology. Fourteen BMD-associated loci were also associated with fracture risk (P < 5 × 10(-4), Bonferroni corrected), of which six reached P < 5 × 10(-8), including at 18p11.21 (FAM210A), 7q21.3 (SLC25A13), 11q13.2 (LRP5), 4q22.1 (MEPE), 2p16.2 (SPTBN1) and 10q21.1 (DKK1). These findings shed light on the genetic architecture and pathophysiological mechanisms underlying BMD variation and fracture susceptibility.
  •  
5.
  •  
6.
  • Vandenput, Liesbeth, et al. (författare)
  • A meta-analysis of previous falls and subsequent fracture risk in cohort studies
  • 2024
  • Ingår i: Osteoporosis International. - : Springer. - 0937-941X .- 1433-2965. ; 35:3, s. 469-494
  • Tidskriftsartikel (refereegranskat)abstract
    • SummaryThe relationship between self-reported falls and fracture risk was estimated in an international meta-analysis of individual-level data from 46 prospective cohorts. Previous falls were associated with an increased fracture risk in women and men and should be considered as an additional risk factor in the FRAX® algorithm.IntroductionPrevious falls are a well-documented risk factor for subsequent fracture but have not yet been incorporated into the FRAX algorithm. The aim of this study was to evaluate, in an international meta-analysis, the association between previous falls and subsequent fracture risk and its relation to sex, age, duration of follow-up, and bone mineral density (BMD).MethodsThe resource comprised 906,359 women and men (66.9% female) from 46 prospective cohorts. Previous falls were uniformly defined as any fall occurring during the previous year in 43 cohorts; the remaining three cohorts had a different question construct. The association between previous falls and fracture risk (any clinical fracture, osteoporotic fracture, major osteoporotic fracture, and hip fracture) was examined using an extension of the Poisson regression model in each cohort and each sex, followed by random-effects meta-analyses of the weighted beta coefficients.ResultsFalls in the past year were reported in 21.4% of individuals. During a follow-up of 9,102,207 person-years, 87,352 fractures occurred of which 19,509 were hip fractures. A previous fall was associated with a significantly increased risk of any clinical fracture both in women (hazard ratio (HR) 1.42, 95% confidence interval (CI) 1.33–1.51) and men (HR 1.53, 95% CI 1.41–1.67). The HRs were of similar magnitude for osteoporotic, major osteoporotic fracture, and hip fracture. Sex significantly modified the association between previous fall and fracture risk, with predictive values being higher in men than in women (e.g., for major osteoporotic fracture, HR 1.53 (95% CI 1.27–1.84) in men vs. HR 1.32 (95% CI 1.20–1.45) in women, P for interaction = 0.013). The HRs associated with previous falls decreased with age in women and with duration of follow-up in men and women for most fracture outcomes. There was no evidence of an interaction between falls and BMD for fracture risk. Subsequent risk for a major osteoporotic fracture increased with each additional previous fall in women and men.ConclusionsA previous self-reported fall confers an increased risk of fracture that is largely independent of BMD. Previous falls should be considered as an additional risk factor in future iterations of FRAX to improve fracture risk prediction.
  •  
7.
  • Liu, Ching-Ti, et al. (författare)
  • Assessment of gene-by-sex interaction effect on bone mineral density
  • 2012
  • Ingår i: Journal of Bone and Mineral Research. - : Wiley. - 1523-4681 .- 0884-0431. ; 27:10, s. 2051-2064
  • Tidskriftsartikel (refereegranskat)abstract
    • Sexual dimorphism in various bone phenotypes, including bone mineral density (BMD), is widely observed; however, the extent to which genes explain these sex differences is unclear. To identify variants with different effects by sex, we examined gene-by-sex autosomal interactions genome-wide, and performed expression quantitative trait loci (eQTL) analysis and bioinformatics network analysis. We conducted an autosomal genome-wide meta-analysis of gene-by-sex interaction on lumbar spine (LS) and femoral neck (FN) BMD in 25,353 individuals from 8 cohorts. In a second stage, we followed up the 12 top single-nucleotide polymorphisms (SNPs; p?
  •  
8.
  • Hsu, Y. H., et al. (författare)
  • Meta-Analysis of Genomewide Association Studies Reveals Genetic Variants for Hip Bone Geometry
  • 2019
  • Ingår i: Journal of Bone and Mineral Research. - : Wiley. - 0884-0431 .- 1523-4681. ; 34:7, s. 1284-1296
  • Tidskriftsartikel (refereegranskat)abstract
    • Hip geometry is an important predictor of fracture. We performed a meta-analysis of GWAS studies in adults to identify genetic variants that are associated with proximal femur geometry phenotypes. We analyzed four phenotypes: (i) femoral neck length; (ii) neck-shaft angle; (iii) femoral neck width, and (iv) femoral neck section modulus, estimated from DXA scans using algorithms of hip structure analysis. In the Discovery stage, 10 cohort studies were included in the fixed-effect meta-analysis, with up to 18,719 men and women ages 16 to 93 years. Association analyses were performed with similar to 2.5 million polymorphisms under an additive model adjusted for age, body mass index, and height. Replication analyses of meta-GWAS significant loci (at adjusted genomewide significance [GWS], threshold p <= 2.6 x 10(-8)) were performed in seven additional cohorts in silico. We looked up SNPs associated in our analysis, for association with height, bone mineral density (BMD), and fracture. In meta-analysis (combined Discovery and Replication stages), GWS associations were found at 5p15 (IRX1 and ADAMTS16); 5q35 near FGFR4; at 12p11 (in CCDC91); 11q13 (near LRP5 and PPP6R3 (rs7102273)). Several hip geometry signals overlapped with BMD, including LRP5 (chr. 11). Chr. 11 SNP rs7102273 was associated with any-type fracture (p = 7.5 x 10(-5)). We used bone transcriptome data and discovered several significant eQTLs, including rs7102273 and PPP6R3 expression (p = 0.0007), and rs6556301 (intergenic, chr.5 near FGFR4) and PDLIM7 expression (p = 0.005). In conclusion, we found associations between several genes and hip geometry measures that explained 12% to 22% of heritability at different sites. The results provide a defined set of genes related to biological pathways relevant to BMD and etiology of bone fragility. (c) 2019 American Society for Bone and Mineral Research.
  •  
9.
  • Wang, Thomas J, et al. (författare)
  • Common genetic determinants of vitamin D insufficiency: a genome-wide association study.
  • 2010
  • Ingår i: Lancet. - 1474-547X. ; 376:9736, s. 180-8
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Vitamin D is crucial for maintenance of musculoskeletal health, and might also have a role in extraskeletal tissues. Determinants of circulating 25-hydroxyvitamin D concentrations include sun exposure and diet, but high heritability suggests that genetic factors could also play a part. We aimed to identify common genetic variants affecting vitamin D concentrations and risk of insufficiency. METHODS: We undertook a genome-wide association study of 25-hydroxyvitamin D concentrations in 33 996 individuals of European descent from 15 cohorts. Five epidemiological cohorts were designated as discovery cohorts (n=16 125), five as in-silico replication cohorts (n=9367), and five as de-novo replication cohorts (n=8504). 25-hydroxyvitamin D concentrations were measured by radioimmunoassay, chemiluminescent assay, ELISA, or mass spectrometry. Vitamin D insufficiency was defined as concentrations lower than 75 nmol/L or 50 nmol/L. We combined results of genome-wide analyses across cohorts using Z-score-weighted meta-analysis. Genotype scores were constructed for confirmed variants. FINDINGS: Variants at three loci reached genome-wide significance in discovery cohorts for association with 25-hydroxyvitamin D concentrations, and were confirmed in replication cohorts: 4p12 (overall p=1.9x10(-109) for rs2282679, in GC); 11q12 (p=2.1x10(-27) for rs12785878, near DHCR7); and 11p15 (p=3.3x10(-20) for rs10741657, near CYP2R1). Variants at an additional locus (20q13, CYP24A1) were genome-wide significant in the pooled sample (p=6.0x10(-10) for rs6013897). Participants with a genotype score (combining the three confirmed variants) in the highest quartile were at increased risk of having 25-hydroxyvitamin D concentrations lower than 75 nmol/L (OR 2.47, 95% CI 2.20-2.78, p=2.3x10(-48)) or lower than 50 nmol/L (1.92, 1.70-2.16, p=1.0x10(-26)) compared with those in the lowest quartile. INTERPRETATION: Variants near genes involved in cholesterol synthesis, hydroxylation, and vitamin D transport affect vitamin D status. Genetic variation at these loci identifies individuals who have substantially raised risk of vitamin D insufficiency. FUNDING: Full funding sources listed at end of paper (see Acknowledgments).
  •  
10.
  • Harvey, N. C., et al. (författare)
  • Sarcopenia Definitions as Predictors of Fracture Risk Independent of FRAX(R), Falls, and BMD in the Osteoporotic Fractures in Men (MrOS) Study: A Meta-Analysis
  • 2021
  • Ingår i: Journal of Bone and Mineral Research. - : Wiley. - 0884-0431 .- 1523-4681. ; 36:7, s. 1235-1244
  • Tidskriftsartikel (refereegranskat)abstract
    • Dual-energy X-ray absorptiometry (DXA)-derived appendicular lean mass/height(2) (ALM/ht(2)) is the most commonly used estimate of muscle mass in the assessment of sarcopenia, but its predictive value for fracture is substantially attenuated by femoral neck (fn) bone mineral density (BMD). We investigated predictive value of 11 sarcopenia definitions for incident fracture, independent of fnBMD, fracture risk assessment tool (FRAX(R)) probability, and prior falls, using an extension of Poisson regression in US, Sweden, and Hong Kong Osteoporois Fractures in Men Study (MrOS) cohorts. Definitions tested were those of Baumgartner and Delmonico (ALM/ht(2) only), Morley, the International Working Group on Sarcopenia, European Working Group on Sarcopenia in Older People (EWGSOP1 and 2), Asian Working Group on Sarcopenia, Foundation for the National Institutes of Health (FNIH) 1 and 2 (using ALM/body mass index [BMI], incorporating muscle strength and/or physical performance measures plus ALM/ht(2)), and Sarcopenia Definitions and Outcomes Consortium (gait speed and grip strength). Associations were adjusted for age and time since baseline and reported as hazard ratio (HR) for first incident fracture, here major osteoporotic fracture (MOF; clinical vertebral, hip, distal forearm, proximal humerus). Further analyses adjusted additionally for FRAX-MOF probability (n = 7531; calculated +/- fnBMD), prior falls (y/n), or fnBMD T-score. Results were synthesized by meta-analysis. In 5660 men in USA, 2764 Sweden and 1987 Hong Kong (mean ages 73.5, 75.4, and 72.4 years, respectively), sarcopenia prevalence ranged from 0.5% to 35%. Sarcopenia status, by all definitions except those of FNIH, was associated with incident MOF (HR = 1.39 to 2.07). Associations were robust to adjustment for prior falls or FRAX probability (without fnBMD); adjustment for fnBMD T-score attenuated associations. EWGSOP2 severe sarcopenia (incorporating chair stand time, gait speed, and grip strength plus ALM) was most predictive, albeit at low prevalence, and appeared only modestly influenced by inclusion of fnBMD. In conclusion, the predictive value for fracture of sarcopenia definitions based on ALM is reduced by adjustment for fnBMD but strengthened by additional inclusion of physical performance measures. (c) 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR)..
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy