SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ceberg Crister) ;pers:(Persson Bertil R)"

Sökning: WFRF:(Ceberg Crister) > Persson Bertil R

  • Resultat 1-10 av 18
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Capala, J, et al. (författare)
  • Boron neutron capture therapy for glioblastoma multiforme : Clinical studies in Sweden
  • 2003
  • Ingår i: Journal of Neuro-Oncology. - 1573-7373. ; 62:1, s. 135-144
  • Tidskriftsartikel (refereegranskat)abstract
    • A boron neutron capture therapy (BNCT) facility has been constructed at Studsvik, Sweden. It includes two filter/moderator configurations. One of the resulting neutron beams has been optimized for clinical irradiations with a filter/moderator system that allows easy variation of the neutron spectrum from the thermal to the epithermal energy range. The other beam has been designed to produce a large uniform field of thermal neutrons for radio-biological research. Scientific operations of the Studsvik BNCT project are overseen by the Scientific Advisory Board comprised of representatives of major universities in Sweden. Furthermore, special task groups for clinical and preclinical studies have been formed to facilitate collaboration with academia. The clinical Phase II trials for glioblastoma are sponsored by the Swedish National Neuro-Oncology Group and, presently, involve a protocol for BNCT treatment of glioblastoma patients who have not received any therapy other than surgery. In this protocol, p-boronophenylalanine (BPA), administered as a 6-h intravenous infusion, is used as the boron delivery agent. As of January 2002, 17 patients were treated. The 6-h infusion of 900 mg BPA/kg body weight was shown to be safe and resulted in the average blood-boron concentration of 24 μg/g (range: 15-32 μg/g) at the time of irradiation (approximately 2-3 h post-infusion). Peak and average weighted radiation doses to the brain were in the ranges of 8.0-15.5 Gy(W) and 3.3-6.1 Gy(W), respectively. So far, no severe BNCT-related acute toxicities have been observed. Due to the short follow-up time, it is too early to evaluate the efficacy of these studies.
  •  
2.
  • Ceberg, Crister, et al. (författare)
  • A comparative study on the pharmacokinetics and biodistribution of boronated porphyrin (BOPP) and sulfhydryl boron hydride (BSH) in the RG2 rat glioma model
  • 1995
  • Ingår i: Journal of Neurosurgery. - 0022-3085. ; 83:1, s. 86-92
  • Tidskriftsartikel (refereegranskat)abstract
    • Boron neutron capture therapy is a treatment modality for cancer that depends on the specific uptake of boron by the tumor cells. The infiltrative growth of malignant gliomas requires that boron reach and accumulate in migrating cells outside the margin of the tumor; thus, it is important that the biodistribution of new boron compounds is also studied in the surrounding healthy brain tissue. This study is undertaken in the present work, in which the biodistribution and pharmacokinetics of sulfhydryl boron hydride (BSH) and boronated porphyrin (BOPP) in the RG2 rat glioma model are investigated. This model mimics the characteristics of human glioma with cells migrating into the surrounding brain. The animals were infused intravenously with either BSH (25 micrograms or 175 micrograms of boron per gram of body weight) or BOPP (12 micrograms of boron per gram body weight). For the low dose of BSH, the maximum tumor-boron content was 8 ppm at approximately 9 hours after the infusion with a tumor-to-blood ratio of 0.6. At the higher dose, the corresponding figures were 15 ppm after 12 hours with a tumor-to-blood ratio of 0.5. For BOPP, a tumor-boron concentration of 81 ppm was achieved 24 hours after the infusion and sustained in that range for at least 72 hours. The tumor-to-blood ratio at 24 hours was slightly above 6, but continued to increase as the blood was cleared. These results indicate that both compounds are spread into the normal brain tissue following the same pathways as the migrating tumor cells and in this way can be taken up even in distant tumor cell foci.
  •  
3.
  • Ceberg, Crister, et al. (författare)
  • A stochastic model for subcellular dosimetry in boron neutron capture therapy
  • 1995
  • Ingår i: Physics in Medicine and Biology. - : IOP Publishing. - 1361-6560 .- 0031-9155. ; 40:11, s. 1819-1830
  • Tidskriftsartikel (refereegranskat)abstract
    • The therapeutic effectiveness of boron neutron capture therapy is highly dependent on the microscopic distribution of the administered boron compound. Two boron compounds with different uptake mechanisms in the tumour cells may thus cause effects of different degrees even if the macroscopic boron concentrations in the tumour tissue are the same. This difference is normally expressed quantitatively by the so-called relative local efficiency (RLE). In this work, a stochastic model for the subcellular dosimetry has been developed. This model can be used to calculate the probability for an energy deposition above a certain threshold level in the cell nucleus due to a single neutron capture reaction. If a threshold cell-kill function is assumed, and if the dose is low enough that multiple energy depositions are rare, the model can also be applied to calculations of the survival probability for a cell population. Subcellular boron distributions in rats carrying RG 2 rat gliomas were measured by subcellular fractionation after administration of two different boron compounds: a sulphydryl boron hydride (BSH) and a boronated porphyrin (BOPP). Based on these data, the RLE factors were then calculated for these compounds using the stochastic model.
  •  
4.
  •  
5.
  •  
6.
  • Ceberg, Crister, et al. (författare)
  • Enhanced boron uptake in RG 2 rat gliomas by electropermeabilization in vivo--a new possibility in boron neutron capture therapy
  • 1994
  • Ingår i: Anti-Cancer Drugs. - 0959-4973. ; 5:4, s. 463-466
  • Tidskriftsartikel (refereegranskat)abstract
    • Accumulation of boron in tumor tissue is an indispensable requirement for boron neutron capture therapy and it is important that the uptake is as high as possible. In this work we have studied the influence of electropermeabilization in vivo on the uptake of boron in normal and RG 2 glioma bearing Fischer 344 rats. Two different boron compounds, a sulfhydryl boron hydride (BSH) and a boronated porphyrin (BOPP), have been investigated. The rats were infused intravenously during 5 min with 175 micrograms BSH/g body weight or 12 micrograms BOPP/g body weight. Two electrodes were placed 5 mm apart in the brain and electropermeabilization was performed with eight square 400 V pulses at 4 and 7 min after the end of the infusion. After 6 h the animals were killed, and the boron content in the tumors and the surrounding brain was measured with neutron-activated autoradiography. In electropermeabilized healthy animals the BOPP uptake was low and limited to the electrode lesions, whereas BSH was spread extensively throughout the hemisphere. Rats with gliomas showed doubled (BOPP) to 10-fold (BSH) uptake of boron in the tumor when electropermeabilization was performed as compared with untreated animals. We conclude that electropermeabilization in the future may provide an interesting possibility to increase the uptake of certain boron compounds before neutron capture therapy.
  •  
7.
  • Ceberg, Crister, et al. (författare)
  • Neutron capture imaging of 10B in tissue specimens
  • 1993
  • Ingår i: Radiotherapy and Oncology. - 1879-0887. ; 26:2, s. 139-146
  • Tidskriftsartikel (refereegranskat)abstract
    • Boron Neutron Capture Therapy (BNCT) is an attractive concept for radiation treatment of malignant tumours. The patients receive a 10B-carrying compound with selective uptake in tumour cells, after which they are irradiated with epithermal neutrons. Theoretically, the tumour cells are killed by the high-LET particles produces in 10B(n, alpha)7Li reactions inside or close to the cell nucleus, while healthy brain cells with no boron uptake will be spared. In practice, a successful BNCT depends on the actual boron-distribution in the tissue, and consequently a new boron-compound aimed for BNCT must undergo detailed bio-distribution studies before clinical trials. In experimental work there is accordingly a great need for methods for quantitative bio-distribution measurements in tissue samples. In this paper we present an improved technique for neutron activated autoradiography providing quantitative boron images of freeze-sectioned tissue specimens from highly malignant rat brain gliomas. Particular attention has been paid to the correlation with the morphology of the specimens and to the altered self-absorption properties due to freeze-drying. A self-absorption correction factor for tumour tissue has been experimentally determined.
  •  
8.
  • Ceberg, Crister, et al. (författare)
  • Performance of sulfhydryl boron hydride in patients with grade III and IV astrocytoma: a basis for boron neutron capture therapy
  • 1995
  • Ingår i: Journal of Neurosurgery. - 0022-3085. ; 83:1, s. 79-85
  • Tidskriftsartikel (refereegranskat)abstract
    • This study investigated the rationale of boron neutron capture therapy (BNCT) for the treatment of Grade III and IV astrocytoma. The European Community joint research program on BNCT plans to use sulfhydryl boron hydride (BSH) in clinical trials. The work presented here, examines the performance of BSH in eight patients with Grade III and IV astrocytoma using a measurement technique which precisely correlates the boron uptake with the histology of the tumor and the peritumoral brain. Astrocytomas are exceptionally heterogeneous and spread migrating tumor cells into the surrounding brain. The patients were infused with 50 mg BSH per kilogram of body weight at 12, 18, 24 or 48 hours before surgery. At the time of operation, specimens were obtained of the tumor, skin, muscle, dura, blood, urine, and, when surgically possible, the brain adjacent to tumor. In three patients the intracellular boron distribution was investigated by subcellular fractionation. The blood clearance was biphasic with half-lives of 0.6 and 8.2 hours. After 3 days, approximately 70% of the dose injected was excreted in the urine. The maximum boron concentration in the tumor was 20 ppm, 12 hours after the infusion. The tumor-to-blood ratios ranged between 0.2 and 1.4, with the highest values after 18 to 24 hours. In the brain specimens the boron concentration never exceeded 1 ppm. This work confirms a selective uptake of boron in the tumor compared to the surrounding brain and that boron, to some extent, is incorporated in the tumor cells.
  •  
9.
  • Ceberg, Crister, et al. (författare)
  • Photon activation therapy of RG2 glioma carrying Fischer rats using stable thallium and monochromatic synchrotron radiation.
  • 2012
  • Ingår i: Physics in Medicine and Biology. - : IOP Publishing. - 1361-6560 .- 0031-9155. ; 57:24, s. 8377-8391
  • Tidskriftsartikel (refereegranskat)abstract
    • 75 RG2 glioma-carrying Fischer rats were treated by photon activation therapy (PAT) with monochromatic synchrotron radiation and stable thallium. Three groups were treated with thallium in combination with radiation at different energy; immediately below and above the thallium K-edge, and at 50 keV. Three control groups were given irradiation only, thallium only, or no treatment at all. For animals receiving thallium in combination with radiation to 15 Gy at 50 keV, the median survival time was 30 days, which was 67% longer than for the untreated controls (p = 0.0020) and 36% longer than for the group treated with radiation alone (not significant). Treatment with thallium and radiation at the higher energy levels were not effective at the given absorbed dose and thallium concentration. In the groups treated at 50 keV and above the K-edge, several animals exhibited extensive and sometimes contra-lateral edema, neuronal death and frank tissue necrosis. No such marked changes were seen in the other groups. The results were discussed with reference to Monte Carlo calculated electron energy spectra and dose enhancement factors.
  •  
10.
  • Munck af Rosenschöld, Per, et al. (författare)
  • Current status of dosimetry at the boron neutron capture therapy facility at Studsvik, Sweden
  • 2002
  • Ingår i: Research and Development in Neutron Capture Therapy. - 9788832329094 ; , s. 437-441
  • Konferensbidrag (refereegranskat)abstract
    • The beam was successfully characterized in air and in phantom using various radiation dosimeter:,. The determination of the thermal neutron and photon components of the mixed beam in phantom can be determined with acceptable uncertainties, while the uncertainty of the high-energy neutron component is considerable but of limited clinical significance. The beam intensity is sufficiently high for reasonably short treatment times. A novel approach to in-vivo dosimetry and quality assurance of treatment time in terms of monitor units was introduced in order to comply with national regulations regarding radiation therapy.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 18

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy