SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Cervenka Simon) "

Sökning: WFRF:(Cervenka Simon)

Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Dima, Danai, et al. (författare)
  • Subcortical volumes across the lifespan : Data from 18,605 healthy individuals aged 3–90 years
  • 2021
  • Ingår i: Human Brain Mapping. - : John Wiley & Sons. - 1065-9471 .- 1097-0193.
  • Tidskriftsartikel (refereegranskat)abstract
    • Age has a major effect on brain volume. However, the normative studies available are constrained by small sample sizes, restricted age coverage and significant methodological variability. These limitations introduce inconsistencies and may obscure or distort the lifespan trajectories of brain morphometry. In response, we capitalized on the resources of the Enhancing Neuroimaging Genetics through Meta-Analysis (ENIGMA) Consortium to examine age-related trajectories inferred from cross-sectional measures of the ventricles, the basal ganglia (caudate, putamen, pallidum, and nucleus accumbens), the thalamus, hippocampus and amygdala using magnetic resonance imaging data obtained from 18,605 individuals aged 3–90 years. All subcortical structure volumes were at their maximum value early in life. The volume of the basal ganglia showed a monotonic negative association with age thereafter; there was no significant association between age and the volumes of the thalamus, amygdala and the hippocampus (with some degree of decline in thalamus) until the sixth decade of life after which they also showed a steep negative association with age. The lateral ventricles showed continuous enlargement throughout the lifespan. Age was positively associated with inter-individual variability in the hippocampus and amygdala and the lateral ventricles. These results were robust to potential confounders and could be used to examine the functional significance of deviations from typical age-related morphometric patterns.
  •  
2.
  • Borg, J., et al. (författare)
  • Contribution of non-genetic factors to dopamine and serotonin receptor availability in the adult human brain
  • 2016
  • Ingår i: Molecular Psychiatry. - London, United Kingdom : NATURE PUBLISHING GROUP. - 1359-4184 .- 1476-5578. ; 21:8, s. 1077-1084
  • Tidskriftsartikel (refereegranskat)abstract
    • The dopamine (DA) and serotonin (5-HT) neurotransmission systems are of fundamental importance for normal brain function and serve as targets for treatment of major neuropsychiatric disorders. Despite central interest for these neurotransmission systems in psychiatry research, little is known about the regulation of receptor and transporter density levels. This lack of knowledge obscures interpretation of differences in protein availability reported in psychiatric patients. In this study, we used positron emission tomography (PET) in a twin design to estimate the relative contribution of genetic and environmental factors, respectively, on dopaminergic and serotonergic markers in the living human brain. Eleven monozygotic and 10 dizygotic healthy male twin pairs were examined with PET and [C-11]raclopride binding to the D-2- and D-3-dopamine receptor and [C-11]WAY100635 binding to the serotonin 5-HT1A receptor. Heritability, shared environmental effects and individual-specific non-shared effects were estimated for regional D-2/3 and 5-HT1A receptor availability in projection areas. We found a major contribution of genetic factors (0.67) on individual variability in striatal D-2/3 receptor binding and a major contribution of environmental factors (pairwise shared and unique individual; 0.70-0.75) on neocortical 5-HT1A receptor binding. Our findings indicate that individual variation in neuroreceptor availability in the adult brain is the end point of a nature-nurture interplay, and call for increased efforts to identify not only the genetic but also the environmental factors that influence neurotransmission in health and disease.
  •  
3.
  • Elvsåshagen, Torbjørn, et al. (författare)
  • The genetic architecture of human brainstem structures and their involvement in common brain disorders
  • 2020
  • Ingår i: Nature Communications. - : Nature Publishing Group. - 2041-1723 .- 2041-1723. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Brainstem regions support vital bodily functions, yet their genetic architectures and involvement in common brain disorders remain understudied. Here, using imaging-genetics data from a discovery sample of 27,034 individuals, we identify 45 brainstem-associated genetic loci, including the first linked to midbrain, pons, and medulla oblongata volumes, and map them to 305 genes. In a replication sample of 7432 participants most of the loci show the same effect direction and are significant at a nominal threshold. We detect genetic overlap between brainstem volumes and eight psychiatric and neurological disorders. In additional clinical data from 5062 individuals with common brain disorders and 11,257 healthy controls, we observe differential volume alterations in schizophrenia, bipolar disorder, multiple sclerosis, mild cognitive impairment, dementia, and Parkinson's disease, supporting the relevance of brainstem regions and their genetic architectures in common brain disorders. The genetic architecture underlying brainstem regions and how this links to common brain disorders is not well understood. Here, the authors use MRI and GWAS data from 27,034 individuals to identify genetic and morphological brainstem features that influence common brain disorders.
  •  
4.
  • Forsberg, A., et al. (författare)
  • The Immune Response of the Human Brain to Abdominal Surgery
  • 2017
  • Ingår i: Annals of Neurology. - : WILEY. - 0364-5134 .- 1531-8249. ; 81:4, s. 572-582
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: Surgery launches a systemic inflammatory reaction that reaches the brain and associates with immune activation and cognitive decline. Although preclinical studies have in part described this systemic-to-brain signaling pathway, we lack information on how these changes appear in humans. This study examines the short-and long-term impact of abdominal surgery on the human brain immune system by positron emission tomography (PET) in relation to blood immune reactivity, plasma inflammatory biomarkers, and cognitive function. Methods: Eight males undergoing prostatectomy under general anesthesia were included. Prior to surgery (baseline), at postoperative days 3 to 4, and after 3 months, patients were examined using [C-11]PBR28 brain PET imaging to assess brain immune cell activation. Concurrently, systemic inflammatory biomarkers, ex vivo blood tests on immunoreactivity to lipopolysaccharide (LPS) stimulation, and cognitive function were assessed. Results: Patients showed a global downregulation of gray matter [C-11]PBR28 binding of 26 +/- 26% (mean +/- standard deviation) at 3 to 4 days postoperatively compared to baseline (p=0.023), recovering or even increasing after 3 months. LPS-induced release of the proinflammatory marker tumor necrosis factor-a in blood displayed a reduction (41 +/- 39%) on the 3rd to 4th postoperative day, corresponding to changes in [C-11]PBR28 distribution volume. Change in Stroop Color-Word Test performance between postoperative days 3 to 4 and 3 months correlated to change in [C-11]PBR28 binding (p=0.027). Interpretation: This study translates preclinical data on changes in the brain immune system after surgery to humans, and suggests an interplay between the human brain and the inflammatory response of the peripheral innate immune system. These findings may be related to postsurgical impairments of cognitive function.
  •  
5.
  • Frangou, Sophia, et al. (författare)
  • Cortical thickness across the lifespan: Data from 17,075 healthy individuals aged 3–90 years
  • 2021
  • Ingår i: Human Brain Mapping. - : John Wiley & Sons. - 1065-9471 .- 1097-0193.
  • Tidskriftsartikel (refereegranskat)abstract
    • Delineating the association of age and cortical thickness in healthy individuals is critical given the association of cortical thickness with cognition and behavior. Previous research has shown that robust estimates of the association between age and brain morphometry require large-scale studies. In response, we used cross-sectional data from 17,075 individuals aged 3–90 years from the Enhancing Neuroimaging Genetics through Meta-Analysis (ENIGMA) Consortium to infer age-related changes in cortical thickness. We used fractional polynomial (FP) regression to quantify the association between age and cortical thickness, and we computed normalized growth centiles using the parametric Lambda, Mu, and Sigma method. Interindividual variability was estimated using meta-analysis and one-way analysis of variance. For most regions, their highest cortical thickness value was observed in childhood. Age and cortical thickness showed a negative association; the slope was steeper up to the third decade of life and more gradual thereafter; notable exceptions to this general pattern were entorhinal, temporopolar, and anterior cingulate cortices. Interindividual variability was largest in temporal and frontal regions across the lifespan. Age and its FP combinations explained up to 59% variance in cortical thickness. These results may form the basis of further investigation on normative deviation in cortical thickness and its significance for behavioral and cognitive outcomes.
  •  
6.
  • Jayaram-Lindstrom, N., et al. (författare)
  • Naltrexone modulates dopamine release following chronic, but not acute amphetamine administration: a translational study
  • 2017
  • Ingår i: Translational Psychiatry. - : Springer Nature. - 2158-3188. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • The opioid antagonist naltrexone has been shown to attenuate the subjective effects of amphetamine. However, the mechanisms behind this modulatory effect are currently unknown. We hypothesized that naltrexone would diminish the striatal dopamine release induced by amphetamine, which is considered an important mechanism behind many of its stimulant properties. We used positron emission tomography and the dopamine D2-receptor radioligand [C-11]raclopride in healthy subjects to study the dopaminergic effects of an amphetamine injection after pretreatment with naltrexone or placebo. In a rat model, we used microdialysis to study the modulatory effects of naltrexone on dopamine levels after acute and chronic amphetamine exposure. In healthy humans, naltrexone attenuated the subjective effects of amphetamine, confirming our previous results. Amphetamine produced a significant reduction in striatal radioligand binding, indicating increased levels of endogenous dopamine. However, there was no statistically significant effect of naltrexone on dopamine release. The same pattern was observed in rats, where an acute injection of amphetamine caused a significant rise in striatal dopamine levels, with no effect of naltrexone pretreatment. However, in a chronic model, naltrexone significantly attenuated the dopamine release caused by reinstatement of amphetamine. Collectively, these data suggest that the opioid system becomes engaged during the more chronic phase of drug use, evidenced by the modulatory effect of naltrexone on dopamine release following chronic amphetamine administration. The importance of opioid-dopamine interactions in the reinforcing and addictive effects of amphetamine is highlighted by the present findings and may help to facilitate medication development in the field of stimulant dependence.
  •  
7.
  • Kaufmann, Tobias, et al. (författare)
  • Common brain disorders are associated with heritable patterns of apparent aging of the brain
  • 2019
  • Ingår i: Nature Neuroscience. - : Nature Publishing Group. - 1097-6256 .- 1546-1726. ; 22:10, s. 1617-
  • Tidskriftsartikel (refereegranskat)abstract
    • Common risk factors for psychiatric and other brain disorders are likely to converge on biological pathways influencing the development and maintenance of brain structure and function across life. Using structural MRI data from 45,615 individuals aged 3-96 years, we demonstrate distinct patterns of apparent brain aging in several brain disorders and reveal genetic pleiotropy between apparent brain aging in healthy individuals and common brain disorders.
  •  
8.
  • Malmqvist, Anna, et al. (författare)
  • Increased peripheral levels of TARC/CCL17 in first episode psychosis patients
  • 2019
  • Ingår i: Schizophrenia Research. - : ELSEVIER. - 0920-9964 .- 1573-2509. ; 210, s. 221-227
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Evidence for a link between the pathophysiology of schizophrenia and the immune system is mounting. Altered levels of chemokines in plasma have previously been reported in patients with schizophrenia under antipsychotic medication. Here we aimed to study both peripheral and central chemokine levels in drugnaive or short-time medicated first episode psychosis (FEP) patients. Method: We analyzed nine chemokines in plasma and CSF from 41 FEP patients and 22 healthy controls using electrochemiluminescence assay. Results: In plasma four chemokines; TARC/CCL17, eotaxin/CCL11, MDC/CCL22, IP-10/CXCL10 and in CSF one chemokine; IP-10/CXCL10 showed reliable detection in N50% of the cases. FEP patients displayed increased levels of TARC/CCL17 in plasma compared to healthy controls, 89.6 (IQR 66.2-125.8) pg/mL compared to 48.6 (IQR 28.0-71.7) pg/mL (p = 0.001). The difference was not attributed to confounding factors. Plasma TARC/CCL17 was not associated with PANSS, CGI or GAF scores, neither with cognitive functions. The chemokines eotaxin/CCL11, MDC/CCL22, IP-10/CXCL10 in plasma and IP-10/CXCL10 in CSF did not differ between FEP patients and controls. Conclusion: In line with a previous study showing that chronic patients with schizophrenia display increased plasma TARC/CCL17 levels, we here found an elevation in FEP patients suggesting a role of TARC/CCL17 in early stages of schizophrenia. The exactmechanism of this involvement is still unknown and future longitudinal studies as well as studies of central and peripheral chemokine levels would be of great interest. (C) 2018 Elsevier B.V. All rights reserved.
  •  
9.
  •  
10.
  • Schwarz, Emanuel, et al. (författare)
  • Reproducible grey matter patterns index a multivariate, global alteration of brain structure in schizophrenia and bipolar disorder
  • 2019
  • Ingår i: Translational Psychiatry. - : Springer Nature. - 2158-3188 .- 2158-3188. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Schizophrenia is a severe mental disorder characterized by numerous subtle changes in brain structure and function. Machine learning allows exploring the utility of combining structural and functional brain magnetic resonance imaging (MRI) measures for diagnostic application, but this approach has been hampered by sample size limitations and lack of differential diagnostic data. Here, we performed a multi-site machine learning analysis to explore brain structural patterns of T1 MRI data in 2668 individuals with schizophrenia, bipolar disorder or attention-deficit/hyperactivity disorder, and healthy controls. We found reproducible changes of structural parameters in schizophrenia that yielded a classification accuracy of up to 76% and provided discrimination from ADHD, through it lacked specificity against bipolar disorder. The observed changes largely indexed distributed grey matter alterations that could be represented through a combination of several global brain-structural parameters. This multi-site machine learning study identified a brain-structural signature that could reproducibly differentiate schizophrenia patients from controls, but lacked specificity against bipolar disorder. While this currently limits the clinical utility of the identified signature, the present study highlights that the underlying alterations index substantial global grey matter changes in psychotic disorders, reflecting the biological similarity of these conditions, and provide a roadmap for future exploration of brain structural alterations in psychiatric patients.
  •  
Skapa referenser, mejla, bekava och länka
Typ av publikation
tidskriftsartikel (84)
forskningsöversikt (6)
bokkapitel (2)
annan publikation (1)
doktorsavhandling (1)
Typ av innehåll
refereegranskat (79)
övrigt vetenskapligt (10)
populärvet., debatt m.m. (5)
Författare/redaktör
Cervenka, Simon (94)
Cervenka, S (83)
Farde, L (45)
Farde, Lars (36)
Halldin, C (29)
Erhardt, S (25)
visa fler...
Fatouros-Bergman, H (25)
Halldin, Christer (23)
Engberg, G (20)
Orhan, F (18)
Flyckt, L (18)
Fatouros-Bergman, He ... (17)
Matheson, GJ (17)
Collste, K (16)
Erhardt, Sophie (15)
Schwieler, L (15)
Piehl, F (14)
Sellgren, CM (13)
Agartz, I (12)
Sellgren, Carl M (12)
Agartz, Ingrid (12)
Forsberg, A (12)
Malmqvist, A (12)
Flyckt, Lena (12)
Westlye, Lars T (11)
Victorsson, P (11)
Andreassen, Ole A (10)
Borg, J. (10)
Westlye, LT (9)
Alnæs, Dag (9)
Varrone, A (9)
Jonsson, EG (9)
Lekander, Mats (9)
Forsberg, Anton (9)
Varrone, Andrea (9)
Andreassen, OA (8)
Doan, NT (8)
Kosek, Eva (8)
Lekander, M (8)
Hedberg, M (8)
Doan, Nhat Trung (7)
Hoekstra, Pieter J. (7)
Lampa, J (7)
Piehl, Fredrik (7)
Lampa, Jon (7)
Collste, Karin (7)
Orhan, Funda (7)
Schwieler, Lilly (7)
Alnaes, D (7)
Borg, Jacqueline (7)
visa färre...
Lärosäte
Uppsala universitet (87)
Karolinska Institutet (58)
Stockholms universitet (7)
Umeå universitet (6)
Göteborgs universitet (5)
Linköpings universitet (2)
visa fler...
Lunds universitet (2)
Kungliga Tekniska Högskolan (1)
Örebro universitet (1)
visa färre...
Språk
Engelska (86)
Svenska (8)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (92)
Naturvetenskap (3)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy