SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Cervenka Simon) ;pers:(Collste Karin)"

Sökning: WFRF:(Cervenka Simon) > Collste Karin

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kaufmann, Tobias, et al. (författare)
  • Common brain disorders are associated with heritable patterns of apparent aging of the brain
  • 2019
  • Ingår i: Nature Neuroscience. - : Nature Publishing Group. - 1097-6256 .- 1546-1726. ; 22:10, s. 1617-
  • Tidskriftsartikel (refereegranskat)abstract
    • Common risk factors for psychiatric and other brain disorders are likely to converge on biological pathways influencing the development and maintenance of brain structure and function across life. Using structural MRI data from 45,615 individuals aged 3-96 years, we demonstrate distinct patterns of apparent brain aging in several brain disorders and reveal genetic pleiotropy between apparent brain aging in healthy individuals and common brain disorders.
  •  
2.
  • Plaven-Sigray, Pontus, et al. (författare)
  • Accuracy and reliability of [C-11]PBR28 specific binding estimated without the use of a reference region
  • 2019
  • Ingår i: NeuroImage. - : ACADEMIC PRESS INC ELSEVIER SCIENCE. - 1053-8119 .- 1095-9572. ; 188, s. 102-110
  • Tidskriftsartikel (refereegranskat)abstract
    • [C-11]PBR28 is a positron emission tomography radioligand used to examine the expression of the 18 kDa translocator protein (TSPO). TSPO is located in glial cells and can function as a marker for immune activation. Since TSPO is expressed throughout the brain, no true reference region exists. For this reason, an arterial input function is required for accurate quantification of [C-11]PBR28 binding and the most common outcome measure is the total distribution volume (V-T). Notably, V-T reflects both specific binding and non-displaceable binding. Therefore, estimates of specific binding, such as binding potential (e.g. BPND) and specific distribution volume (V-S) should theoretically be more sensitive to underlying differences in TSPO expression. It is unknown, however, if unbiased and accurate estimates of these outcome measures are obtainable for [C-11]PBR28. The Simultaneous Estimation (SIME) method uses time-activity-curves from multiple brain regions with the aim to obtain a brain-wide estimate of the non-displaceable distribution volume (V-ND), which can subsequently be used to improve the estimation of BPND and V-S. In this study we evaluated the accuracy of SIME-derived V-ND, and the reliability of resulting estimates of specific binding for [C-11]PBR28, using a combination of simulation experiments and in vivo studies in healthy humans. The simulation experiments, based on data from 54 unique [C-11]PBR28 examinations, showed that V-ND values estimated using SIME were both precise and accurate. Data from a pharmacological competition challenge (n = 5) showed that SIME provided V-ND values that were on average 19% lower than those obtained using the Lassen plot, but similar to values obtained using the Likelihood-Estimation of Occupancy technique. Test-retest data (n = 11) showed that SIME-derived V-S values exhibited good reliability and precision, while larger variability was observed in SIME-derived BPND values. The results support the use of SIME for quantifying specific binding of [C-11]PBR28, and suggest that V-S can be used in complement to the conventional outcome measure V-T. Additional studies in patient cohorts are warranted.
  •  
3.
  • Alnaes, Dag, et al. (författare)
  • Brain Heterogeneity in Schizophrenia and Its Association With Polygenic Risk
  • 2019
  • Ingår i: JAMA psychiatry. - : AMER MEDICAL ASSOC. - 2168-6238 .- 2168-622X. ; 76:7, s. 739-748
  • Tidskriftsartikel (refereegranskat)abstract
    • ImportanceBetween-individual variability in brain structure is determined by gene-environment interactions, possibly reflecting differential sensitivity to environmental and genetic perturbations. Magnetic resonance imaging (MRI) studies have revealed thinner cortices and smaller subcortical volumes in patients with schizophrenia. However, group-level comparisons may mask considerable within-group heterogeneity, which has largely remained unnoticed in the literature. ObjectivesTo compare brain structural variability between individuals with schizophrenia and healthy controls and to test whether respective variability reflects the polygenic risk score (PRS) for schizophrenia in an independent sample of healthy controls. Design, Setting, and ParticipantsThis case-control and polygenic risk analysis compared MRI-derived cortical thickness and subcortical volumes between healthy controls and patients with schizophrenia across 16 cohorts and tested for associations between PRS and MRI features in a control cohort from the UK Biobank. Data were collected from October 27, 2004, through April 12, 2018, and analyzed from December 3, 2017, through August 1, 2018. Main Outcomes and MeasuresMean and dispersion parameters were estimated using double generalized linear models. Vertex-wise analysis was used to assess cortical thickness, and regions-of-interest analyses were used to assess total cortical volume, total surface area, and white matter, subcortical, and hippocampal subfield volumes. Follow-up analyses included within-sample analysis, test of robustness of the PRS threshold, population covariates, outlier removal, and control for image quality. ResultsA comparison of 1151 patients with schizophrenia (mean [SD] age,33.8[10.6] years; 68.6% male [n=790] and 31.4% female [n=361]) with 2010 healthy controls (mean [SD] age,32.6[10.4] years; 56.0% male [n=1126] and 44.0% female [n=884]) revealed higher heterogeneity in schizophrenia for cortical thickness and area (t = 3.34), cortical (t=3.24) and ventricle (t range, 3.15-5.78) volumes, and hippocampal subfields (t range, 2.32-3.55). In the UK Biobank sample of 12 490 participants (mean [SD] age,55.9 [7.5] years; 48.2% male [n=6025] and 51.8% female [n=6465]), higher PRS was associated with thinner frontal and temporal cortices and smaller left CA2/3 (t=-3.00) but was not significantly associated with dispersion. Conclusions and RelevanceThis study suggests that schizophrenia is associated with substantial brain structural heterogeneity beyond the mean differences. These findings may reflect higher sensitivity to environmental and genetic perturbations in patients, supporting the heterogeneous nature of schizophrenia. A higher PRS was associated with thinner frontotemporal cortices and smaller hippocampal subfield volume, but not heterogeneity. This finding suggests that brain variability in schizophrenia results from interactions between environmental and genetic factors that are not captured by the PRS. Factors contributing to heterogeneity in frontotemporal cortices and hippocampus are key to furthering our understanding of how genetic and environmental factors shape brain biology in schizophrenia.
  •  
4.
  • Kanegawa, Naoki, et al. (författare)
  • In vivo evidence of a functional association between immune cells in blood and brain in healthy human subjects
  • 2016
  • Ingår i: Brain, behavior, and immunity. - : ACADEMIC PRESS INC ELSEVIER SCIENCE. - 0889-1591 .- 1090-2139. ; 54, s. 149-157
  • Tidskriftsartikel (refereegranskat)abstract
    • Microglia, the resident macrophages in the central nervous system, are thought to be maintained by a local self-renewal mechanism. Although preclinical and in vitro studies have suggested that the brain may contain immune cells also from peripheral origin, the functional association between immune cells in the periphery and brain at physiological conditions is poorly understood. We examined 32 healthy individuals using positron emission tomography (PET) and [C-11]PBR28, a radioligand for the 18-kDa translocator protein (TSPO) which is expressed both in brain microglia and blood immune cells. In 26 individuals, two measurements were performed with varying time intervals. In a subgroup of 19 individuals, of which 12 had repeat examinations, leukocyte numbers in blood was measured on each day of PET measurements. All individuals were genotyped for TSPO polymorphism and categorized as high, mixed, and low affinity binders. We assessed TSPO binding expressed as total distribution volume of [C-11]PBR28 in brain and in blood cells. TSPO binding in brain was strongly and positively correlated to binding in blood cells both at baseline and when analyzing change between two PET examinations. Furthermore, there was a significant correlation between change of leukocyte numbers and change in TSPO binding in brain, and a trend level correlation to change in TSPO binding in blood cells. These in vivo findings indicate an association between immunological cells in blood and brain via intact BBB, suggesting a functional interaction between these two compartments, such as interchange of peripherally derived cells or a common regulatory mechanism. Measurement of radioligand binding in blood cells may be a way to control for peripheral immune function in PET studies using TSPO as a marker of brain immune activation. (C) 2016 Elsevier Inc. All rights reserved.
  •  
5.
  • Plaven-Sigray, Pontus, et al. (författare)
  • Positron Emission Tomography Studies of the Glial Cell Marker Translocator Protein in Patients With Psychosis : A Meta-analysis Using Individual Participant Data
  • 2018
  • Ingår i: Biological Psychiatry. - : Elsevier BV. - 0006-3223 .- 1873-2402. ; 84:6, s. 433-442
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Accumulating evidence suggests that the immune system may be an important target for new treatment approaches in schizophrenia. Positron emission tomography and radioligands binding to the translocator protein (TSPO), which is expressed in glial cells in the brain including immune cells, represents a potential method for patient stratification and treatment monitoring. This study examined whether patients with first-episode psychosis and schizophrenia had altered TSPO levels compared with healthy control subjects.METHODS: PubMed was searched for studies comparing patients with psychosis with healthy control subjects using second-generation TSPO radioligands. The outcome measure was total distribution volume (V-T), an index of TSPO levels, in frontal cortex, temporal cortex, and hippocampus. Bayes factors (BFs) were applied to examine the relative support for higher, lower, or no difference in patients' TSPO levels compared with healthy control subjects.RESULTS: Five studies, with 75 participants with first-episode psychosis or schizophrenia and 77 healthy control subjects, were included. BFs showed strong support for lower VT in patients relative to no difference (all BFs > 32), or relative to higher V-T (all BFs > 422), in all brain regions. From the posterior distributions, mean patient-control differences in standardized V-T values were -0.48 for frontal cortex (95% credible interval [CredInt] = -0.88 to 0.09), -0.47 for temporal cortex (CredInt = -0.87 to -0.07), and -0.63 for hippocampus (CredInt = -1.00 to -0.25).CONCLUSIONS: The lower levels of TSPO observed in patients may correspond to altered function or lower density of brain immune cells. Future studies should focus on investigating the underlying biological mechanisms and their relevance for treatment.
  •  
6.
  • Plavén-Sigray, Pontus, et al. (författare)
  • Thalamic dopamine D2-receptor availability in schizophrenia : a study on antipsychotic-naive patients with first-episode psychosis and a meta-analysis.
  • 2022
  • Ingår i: Molecular Psychiatry. - : Springer Nature. - 1359-4184 .- 1476-5578. ; 27:2, s. 1233-1240
  • Tidskriftsartikel (refereegranskat)abstract
    • Pharmacological and genetic evidence support a role for an involvement of the dopamine D2-receptor (D2-R) in the pathophysiology of schizophrenia. Previous molecular imaging studies have suggested lower levels of D2-R in thalamus, but results are inconclusive. The objective of the present study was to use improved methodology to compare D2-R density in whole thalamus and thalamic subregions between first-episode psychosis patients and healthy controls. Differences in thalamocortical connectivity was explored based on the D2-R results. 19 antipsychotic-naive first-episode psychosis patients and 19 age- and sex-matched healthy controls were examined using high-resolution Positron Emission Tomography (PET) and the high-affinity D2-R radioligand [11C]FLB457. The main outcome was D2-R binding potential (BPND) in thalamus, and it was predicted that patients would have lower binding. Diffusion tensor imaging (DTI) was performed in a subgroup of 11 patients and 15 controls. D2-R binding in whole thalamus was lower in patients compared with controls (Cohen's dz = -0.479, p = 0.026, Bayes Factor (BF) > 4). Among subregions, lower BPND was observed in the ROI representing thalamic connectivity to the frontal cortex (Cohen's dz = -0.527, p = 0.017, BF > 6). A meta-analysis, including the sample of this study, confirmed significantly lower thalamic D2-R availability in patients. Exploratory analyses suggested that patients had lower fractional anisotropy values compared with controls (Cohen's d = -0.692, p = 0.036) in the inferior thalamic radiation. The findings support the hypothesis of a dysregulation of thalamic dopaminergic neurotransmission in schizophrenia, and it is hypothesized that this could underlie a disturbance of thalamocortical connectivity.
  •  
7.
  • Tuisku, Jouni, et al. (författare)
  • Effects of age, BMI and sex on the glial cell marker TSPO : a multicentre [11C]PBR28 HRRT PET study
  • 2019
  • Ingår i: European Journal of Nuclear Medicine and Molecular Imaging. - : Springer. - 1619-7070 .- 1619-7089. ; 46:11, s. 2329-2338
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose The purpose of this study was to investigate the effects of ageing, sex and body mass index (BMI) on translocator protein (TSPO) availability in healthy subjects using positron emission tomography (PET) and the radioligand [C-11]PBR28. Methods [C-11]PBR28 data from 140 healthy volunteers (72 males and 68 females; N = 78 with HAB and N = 62 MAB genotype; age range 19-80 years; BMI range 17.6-36.9) were acquired with High Resolution Research Tomograph at three centres: Karolinska Institutet (N = 53), Turku PET centre (N = 62) and Yale University PET Center (N = 25). The total volume of distribution (V-T) was estimated in global grey matter, frontal, temporal, occipital and parietal cortices, hippocampus and thalamus using multilinear analysis 1. The effects of age, BMI and sex on TSPO availability were investigated using linear mixed effects model, with TSPO genotype and PET centre specified as random intercepts. Results There were significant positive correlations between age and V-T in the frontal and temporal cortex. BMI showed a significant negative correlation with V-T in all regions. Additionally, significant differences between males and females were observed in all regions, with females showing higher V-T. A subgroup analysis revealed a positive correlation between V-T and age in all regions in male subjects, whereas age showed no effect on TSPO levels in female subjects. Conclusion These findings provide evidence that individual biological properties may contribute significantly to the high variation shown in TSPO binding estimates, and suggest that age, BMI and sex can be confounding factors in clinical studies.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy