SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Cervenka Simon) ;pers:(Flyckt Lena)"

Sökning: WFRF:(Cervenka Simon) > Flyckt Lena

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kaufmann, Tobias, et al. (författare)
  • Common brain disorders are associated with heritable patterns of apparent aging of the brain
  • 2019
  • Ingår i: Nature Neuroscience. - : Nature Publishing Group. - 1097-6256 .- 1546-1726. ; 22:10, s. 1617-
  • Tidskriftsartikel (refereegranskat)abstract
    • Common risk factors for psychiatric and other brain disorders are likely to converge on biological pathways influencing the development and maintenance of brain structure and function across life. Using structural MRI data from 45,615 individuals aged 3-96 years, we demonstrate distinct patterns of apparent brain aging in several brain disorders and reveal genetic pleiotropy between apparent brain aging in healthy individuals and common brain disorders.
  •  
2.
  • Malmqvist, Anna, et al. (författare)
  • Increased peripheral levels of TARC/CCL17 in first episode psychosis patients
  • 2019
  • Ingår i: Schizophrenia Research. - : ELSEVIER. - 0920-9964 .- 1573-2509. ; 210, s. 221-227
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Evidence for a link between the pathophysiology of schizophrenia and the immune system is mounting. Altered levels of chemokines in plasma have previously been reported in patients with schizophrenia under antipsychotic medication. Here we aimed to study both peripheral and central chemokine levels in drugnaive or short-time medicated first episode psychosis (FEP) patients. Method: We analyzed nine chemokines in plasma and CSF from 41 FEP patients and 22 healthy controls using electrochemiluminescence assay. Results: In plasma four chemokines; TARC/CCL17, eotaxin/CCL11, MDC/CCL22, IP-10/CXCL10 and in CSF one chemokine; IP-10/CXCL10 showed reliable detection in N50% of the cases. FEP patients displayed increased levels of TARC/CCL17 in plasma compared to healthy controls, 89.6 (IQR 66.2-125.8) pg/mL compared to 48.6 (IQR 28.0-71.7) pg/mL (p = 0.001). The difference was not attributed to confounding factors. Plasma TARC/CCL17 was not associated with PANSS, CGI or GAF scores, neither with cognitive functions. The chemokines eotaxin/CCL11, MDC/CCL22, IP-10/CXCL10 in plasma and IP-10/CXCL10 in CSF did not differ between FEP patients and controls. Conclusion: In line with a previous study showing that chronic patients with schizophrenia display increased plasma TARC/CCL17 levels, we here found an elevation in FEP patients suggesting a role of TARC/CCL17 in early stages of schizophrenia. The exactmechanism of this involvement is still unknown and future longitudinal studies as well as studies of central and peripheral chemokine levels would be of great interest. (C) 2018 Elsevier B.V. All rights reserved.
  •  
3.
  • Alnaes, Dag, et al. (författare)
  • Brain Heterogeneity in Schizophrenia and Its Association With Polygenic Risk
  • 2019
  • Ingår i: JAMA psychiatry. - : AMER MEDICAL ASSOC. - 2168-6238 .- 2168-622X. ; 76:7, s. 739-748
  • Tidskriftsartikel (refereegranskat)abstract
    • ImportanceBetween-individual variability in brain structure is determined by gene-environment interactions, possibly reflecting differential sensitivity to environmental and genetic perturbations. Magnetic resonance imaging (MRI) studies have revealed thinner cortices and smaller subcortical volumes in patients with schizophrenia. However, group-level comparisons may mask considerable within-group heterogeneity, which has largely remained unnoticed in the literature. ObjectivesTo compare brain structural variability between individuals with schizophrenia and healthy controls and to test whether respective variability reflects the polygenic risk score (PRS) for schizophrenia in an independent sample of healthy controls. Design, Setting, and ParticipantsThis case-control and polygenic risk analysis compared MRI-derived cortical thickness and subcortical volumes between healthy controls and patients with schizophrenia across 16 cohorts and tested for associations between PRS and MRI features in a control cohort from the UK Biobank. Data were collected from October 27, 2004, through April 12, 2018, and analyzed from December 3, 2017, through August 1, 2018. Main Outcomes and MeasuresMean and dispersion parameters were estimated using double generalized linear models. Vertex-wise analysis was used to assess cortical thickness, and regions-of-interest analyses were used to assess total cortical volume, total surface area, and white matter, subcortical, and hippocampal subfield volumes. Follow-up analyses included within-sample analysis, test of robustness of the PRS threshold, population covariates, outlier removal, and control for image quality. ResultsA comparison of 1151 patients with schizophrenia (mean [SD] age,33.8[10.6] years; 68.6% male [n=790] and 31.4% female [n=361]) with 2010 healthy controls (mean [SD] age,32.6[10.4] years; 56.0% male [n=1126] and 44.0% female [n=884]) revealed higher heterogeneity in schizophrenia for cortical thickness and area (t = 3.34), cortical (t=3.24) and ventricle (t range, 3.15-5.78) volumes, and hippocampal subfields (t range, 2.32-3.55). In the UK Biobank sample of 12 490 participants (mean [SD] age,55.9 [7.5] years; 48.2% male [n=6025] and 51.8% female [n=6465]), higher PRS was associated with thinner frontal and temporal cortices and smaller left CA2/3 (t=-3.00) but was not significantly associated with dispersion. Conclusions and RelevanceThis study suggests that schizophrenia is associated with substantial brain structural heterogeneity beyond the mean differences. These findings may reflect higher sensitivity to environmental and genetic perturbations in patients, supporting the heterogeneous nature of schizophrenia. A higher PRS was associated with thinner frontotemporal cortices and smaller hippocampal subfield volume, but not heterogeneity. This finding suggests that brain variability in schizophrenia results from interactions between environmental and genetic factors that are not captured by the PRS. Factors contributing to heterogeneity in frontotemporal cortices and hippocampus are key to furthering our understanding of how genetic and environmental factors shape brain biology in schizophrenia.
  •  
4.
  • Becklén, Meneca, et al. (författare)
  • Plasma bilirubin levels are reduced in first-episode psychosis patients and associates to working memory and duration of untreated psychosis.
  • 2021
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Schizophrenia is a severe mental disorder and one of its characteristics is cognitive impairments. Findings regarding levels of the heme metabolite and plasma antioxidant bilirubin in schizophrenia are inconclusive. However, a recently published study indicate that low levels of bilirubin may be implicated in the memory impairments seen in the disorder. The aim of this cross-sectional study was to investigate the levels of bilirubin in individuals with a first-episode psychosis (FEP) and to examine if bilirubin levels were associated to cognitive impairments, symptoms and duration of untreated psychosis (DUP). Bilirubin levels were reduced in 39 individuals with FEP compared with 20 HC (median [IQR]: 11.0 [9.0-13.0] µM vs. 15.0 [11.5-18.5] µM). In individuals with FEP, bilirubin levels were also positively correlated to two working memory tests (r = 0.40 and r = 0.32) and inversely correlated to DUP (r = - 0.36). Findings were not influenced by confounding factors. The results confirm the antioxidant deficit previously seen in schizophrenia, but also indicate that these changes may be related to DUP. The study also confirms that bilirubin may be implicated in the cognitive deficits that accompanies the disorder, here for the first time presented in individuals with FEP.
  •  
5.
  •  
6.
  •  
7.
  • Fatouros-Bergman, Helena, et al. (författare)
  • Meta-analysis of cognitive performance in drug-naive patients with schizophrenia
  • 2014
  • Ingår i: Schizophrenia Research. - : Elsevier BV. - 0920-9964 .- 1573-2509. ; 158:1-3, s. 156-162
  • Tidskriftsartikel (refereegranskat)abstract
    • Cognitive deficits represent a significant characteristic of schizophrenia. However, a majority of the clinical studies have been conducted in antipsychotic drug treated patients. Thus, it remains unclear if significant cognitive impairments exist in the absence of medication. This is the first meta-analysis of cognitive findings in drug-na ve patients with schizophrenia. Cognitive data from 23 studies encompassing 1106 patients and 1385 controls published from 1992 to 2013 were included. Tests were to a large extent ordered in cognitive domains according to the Measurement and Treatment Research to Improve Cognition in Schizophrenia (MATRICS) battery. Analysis was performed with STATA using the random-effects model and heterogeneity as well as Egger's publication bias was assessed. Overall the results show that patients performed worse than healthy controls in all cognitive domains with medium to large effect sizes. Verbal memory, speed of processing and working memory were three of the domains with the greatest impairments. The pattern of results is in line with previous meta-analytic findings in antipsychotic treated patients. The present meta-analysis confirms the existence of significant cognitive impairments at the early stage of the illness in the absence of antipsychotic medication.
  •  
8.
  • Lee, Maria, et al. (författare)
  • No association between cortical dopamine D2 receptor availability and cognition in antipsychotic-naive first-episode psychosis
  • 2021
  • Ingår i: NPJ SCHIZOPHRENIA. - : Springer Nature. - 2334-265X. ; 7:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Cognitive impairment is an important predictor of disability in schizophrenia. Dopamine neurotransmission in cortical brain regions has been suggested to be of importance for higher-order cognitive processes. The aim of this study was to examine the relationship between extrastriatal dopamine D2-R availability and cognitive function, using positron emission tomography and the high-affinity D2-R radioligand [C-11]FLB 457, in an antipsychotic-naive sample of 18 first-episode psychosis patients and 16 control subjects. We observed no significant associations between D2-R binding in the dorsolateral prefrontal cortex or hippocampus (beta = 0.013-0.074, partial r= -0.037-0.273, p = 0.131-0.841). Instead, using Bayesian statistics, we found moderate support for the null hypothesis of no relationship (BFH0:H1 = 3.3-8.2). Theoretically, our findings may suggest a lack of detrimental effects of D2-R antagonist drugs on cognition in schizophrenia patients, in line with clinical observations.
  •  
9.
  •  
10.
  • Tønnesen, Siren, et al. (författare)
  • Brain Age Prediction Reveals Aberrant Brain White Matter in Schizophrenia and Bipolar Disorder : A Multisample Diffusion Tensor Imaging Study
  • 2020
  • Ingår i: Biological Psychiatry. - : Elsevier BV. - 2451-9022 .- 2451-9030. ; 5:12, s. 1095-1103
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Schizophrenia (SZ) and bipolar disorder (BD) share substantial neurodevelopmental components affecting brain maturation and architecture. This necessitates a dynamic lifespan perspective in which brain aberrations are inferred from deviations from expected lifespan trajectories. We applied machine learning to diffusion tensor imaging (DTI) indices of white matter structure and organization to estimate and compare brain age between patients with SZ, patients with BD, and healthy control (HC) subjects across 10 cohorts.METHODS: We trained 6 cross-validated models using different combinations of DTI data from 927 HC subjects (18-94 years of age) and applied the models to the test sets including 648 patients with SZ (18-66 years of age), 185 patients with BD (18-64 years of age), and 990 HC subjects (17-68 years of age), estimating the brain age for each participant. Group differences were assessed using linear models, accounting for age, sex, and scanner. A meta-analytic framework was applied to assess the heterogeneity and generalizability of the results.RESULTS: Tenfold cross-validation revealed high accuracy for all models. Compared with HC subjects, the model including all feature sets significantly overestimated the age of patients with SZ (Cohen's d = -0.29) and patients with BD (Cohen's d = 0.18), with similar effects for the other models. The meta-analysis converged on the same findings. Fractional anisotropy-based models showed larger group differences than the models based on other DTI-derived metrics.CONCLUSIONS: Brain age prediction based on DTI provides informative and robust proxies for brain white matter integrity. Our results further suggest that white matter aberrations in SZ and BD primarily consist of anatomically distributed deviations from expected lifespan trajectories that generalize across cohorts and scanners.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy