SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Chabes Andrei) "

Sökning: WFRF:(Chabes Andrei)

  • Resultat 1-10 av 87
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kong, Ziqing, et al. (författare)
  • Simultaneous determination of ribonucleoside and deoxyribonucleoside triphosphates in biological samples by hydrophilic interaction liquid chromatography coupled with tandem mass spectrometry
  • 2018
  • Ingår i: Nucleic Acids Research. - : Oxford University Press. - 0305-1048 .- 1362-4962. ; 46:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Information about the intracellular concentration of dNTPs and NTPs is important for studies of the mechanisms of DNA replication and repair, but the low concentration of dNTPs and their chemical similarity to NTPs present a challenge for their measurement. Here, we describe a new rapid and sensitive method utilizing hydrophilic interaction liquid chromatography coupled with tandem mass spectrometry for the simultaneous determination of dNTPs and NTPs in biological samples. The developed method showed linearity (R2 > 0.99) in wide concentration ranges and could accurately quantify dNTPs and NTPs at low pmol levels. The intra-day and inter-day precision were below 13%, and the relative recovery was between 92% and 108%. In comparison with other chromatographic methods, the current method has shorter analysis times and simpler sample pre-treatment steps, and it utilizes an ion-pair-free mobile phase that enhances mass-spectrometric detection. Using this method, we determined dNTP and NTP concentrations in actively dividing and quiescent mouse fibroblasts.
  •  
2.
  • Rentoft, Matilda, et al. (författare)
  • Heterozygous colon cancer-associated mutations of SAMHD1 have functional significance
  • 2016
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 113:17, s. 4723-4728
  • Tidskriftsartikel (refereegranskat)abstract
    • Even small variations in dNTP concentrations decrease DNA replication fidelity, and this observation prompted us to analyze genomic cancer data for mutations in enzymes involved in dNTP metabolism. We found that sterile alpha motif and histidine-aspartate domain-containing protein 1 (SAMHD1), a deoxyribonucleoside triphosphate triphosphohydrolase that decreases dNTP pools, is frequently mutated in colon cancers, that these mutations negatively affect SAMHD1 activity, and that severalSAMHD1mutations are found in tumors with defective mismatch repair. We show that minor changes in dNTP pools in combination with inactivated mismatch repair dramatically increase mutation rates. Determination of dNTP pools in mouse embryos revealed that inactivation of oneSAMHD1allele is sufficient to elevate dNTP pools. These observations suggest that heterozygous cancer-associatedSAMHD1mutations increase mutation rates in cancer cells.
  •  
3.
  • Bacal, Julien, et al. (författare)
  • Mrc1 and Rad9 cooperate to regulate initiation and elongation of DNA replication in response to DNA damage
  • 2018
  • Ingår i: EMBO Journal. - : Wiley-VCH Verlagsgesellschaft. - 0261-4189 .- 1460-2075. ; 37:21
  • Tidskriftsartikel (refereegranskat)abstract
    • The S-phase checkpoint maintains the integrity of the genome in response to DNA replication stress. In budding yeast, this pathway is initiated by Mec1 and is amplified through the activation of Rad53 by two checkpoint mediators: Mrc1 promotes Rad53 activation at stalled forks, and Rad9 is a general mediator of the DNA damage response. Here, we have investigated the interplay between Mrc1 and Rad9 in response to DNA damage and found that they control DNA replication through two distinct but complementary mechanisms. Mrc1 rapidly activates Rad53 at stalled forks and represses late-firing origins but is unable to maintain this repression over time. Rad9 takes over Mrc1 to maintain a continuous checkpoint signaling. Importantly, the Rad9-mediated activation of Rad53 slows down fork progression, supporting the view that the S-phase checkpoint controls both the initiation and the elongation of DNA replication in response to DNA damage. Together, these data indicate that Mrc1 and Rad9 play distinct functions that are important to ensure an optimal completion of S phase under replication stress conditions.
  •  
4.
  • Barfeld, Stefan J, et al. (författare)
  • Myc-dependent purine biosynthesis affects nucleolar stress and therapy response in prostate cancer.
  • 2015
  • Ingår i: Oncotarget. - : Impact Journals, LLC. - 1949-2553. ; 6:14, s. 12587-12602
  • Tidskriftsartikel (refereegranskat)abstract
    • The androgen receptor is a key transcription factor contributing to the development of all stages of prostate cancer (PCa). In addition, other transcription factors have been associated with poor prognosis in PCa, amongst which c-Myc (MYC) is a well-established oncogene in many other cancers. We have previously reported that the AR promotes glycolysis and anabolic metabolism; many of these metabolic pathways are also MYC-regulated in other cancers. In this study, we report that in PCa cells de novo purine biosynthesis and the subsequent conversion to XMP is tightly regulated by MYC and independent of AR activity. We characterized two enzymes, PAICS and IMPDH2, within the pathway as PCa biomarkers in tissue samples and report increased efficacy of established anti-androgens in combination with a clinically approved IMPDH inhibitor, mycophenolic acid (MPA). Treatment with MPA led to a significant reduction in cellular guanosine triphosphate (GTP) levels accompanied by nucleolar stress and p53 stabilization. In conclusion, targeting purine biosynthesis provides an opportunity to perturb PCa metabolism and enhance tumour suppressive stress responses.
  •  
5.
  • Barfeld, Stefan J, et al. (författare)
  • Myc-dependent purine biosynthesis affects nucleolar stress and therapy response in prostate cancer
  • 2015
  • Ingår i: Oncotarget. - 1949-2553. ; 6:14, s. 12587-12602
  • Tidskriftsartikel (refereegranskat)abstract
    • The androgen receptor is a key transcription factor contributing to the development of all stages of prostate cancer (PCa). In addition, other transcription factors have been associated with poor prognosis in PCa, amongst which c-Myc (MYC) is a well-established oncogene in many other cancers. We have previously reported that the AR promotes glycolysis and anabolic metabolism; many of these metabolic pathways are also MYC-regulated in other cancers. In this study, we report that in PCa cells de novo purine biosynthesis and the subsequent conversion to XMP is tightly regulated by MYC and independent of AR activity. We characterized two enzymes, PAICS and IMPDH2, within the pathway as PCa biomarkers in tissue samples and report increased efficacy of established anti-androgens in combination with a clinically approved IMPDH inhibitor, mycophenolic acid (MPA). Treatment with MPA led to a significant reduction in cellular guanosine triphosphate (GTP) levels accompanied by nucleolar stress and p53 stabilization. In conclusion, targeting purine biosynthesis provides an opportunity to perturb PCa metabolism and enhance tumour suppressive stress responses.
  •  
6.
  • Batté, Amandine, et al. (författare)
  • Chl1 helicase controls replication fork progression by regulating dNTP pools
  • 2022
  • Ingår i: Life Science Alliance. - : Life Science Alliance, LLC. - 2575-1077. ; 5:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Eukaryotic cells have evolved a replication stress response that helps to overcome stalled/collapsed replication forks and ensure proper DNA replication. The replication checkpoint protein Mrc1 plays important roles in these processes, although its functional interactions are not fully understood. Here, we show that MRC1 negatively interacts with CHL1, which encodes the helicase protein Chl1, suggesting distinct roles for these factors during the replication stress response. Indeed, whereas Mrc1 is known to facilitate the restart of stalled replication forks, we uncovered that Chl1 controls replication fork rate under replication stress conditions. Chl1 loss leads to increased RNR1 gene expression and dNTP levels at the onset of S phase likely without activating the DNA damage response. This in turn impairs the formation of RPA-coated ssDNA and subsequent checkpoint activation. Thus, the Chl1 helicase affects RPA-dependent checkpoint activation in response to replication fork arrest by ensuring proper intracellular dNTP levels, thereby controlling replication fork progression under replication stress conditions.
  •  
7.
  • Buckland, Robert, 1976- (författare)
  • DNA precursor asymmetries, Mismatch Repair and their effect on mutation specificity
  • 2015
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • In order to build any structure, a good supply of materials, accurate workers and quality control are needed. This is even the case when constructing DNA, the so-called “Code of Life.” For a species to continue to exist, this DNA code must be copied with incredibly high accuracy when each and every cell replicates. In fact, just one mistake in the 12 million bases that comprise the genome of budding yeast, Saccharomyces cerevisiae, can be fatal. DNA is composed of a double strand helix made up of just four different bases repeated millions of times. The building blocks of DNA are the deoxyribonucleotides (dNTPs); dCTP, dTTP, dATP and dGTP. Their production and balance are carefully controlled within each cell, largely by the key enzyme Ribonucleotide Reductase (RNR). Here, we studied how the enzymes that copy DNA, the replicative polymerases α, δ and ε, cope with the effects of an altered dNTP pool balance. An introduced mutation in the allosteric specificity site of RNR in a strain of S. cerevisiae, rnr1-Y285A, leads to elevated dCTP and dTTP levels and has been shown to have a 14-fold increase in mutation rate compared to wild type. To ascertain the full effects of the dNTP pool imbalance upon the replicative polymerases, we disabled one of the major quality control systems in a cell that corrects replication errors, the post-replicative Mismatch Repair system. Using both the CAN1 reporter assay and whole genome sequencing, we found that, despite inherent differences between the polymerases, their replication fidelity was affected very similarly by this dNTP pool imbalance. Hence, the high dCTP and dTTP forced Pol ε and Pol α/δ to make the same mistakes. In addition, the mismatch repair machinery was found to correct replication errors driven by this dNTP pool imbalance with highly variable efficiencies. Another mechanism to protect cells from DNA damage during replication is a checkpoint that can be activated to delay the cell cycle and activate repair mechanisms. In yeast, Mec1 and Rad53 (human ATR and Chk1/Chk2) are two key S-phase checkpoint proteins. They are essential as they are also required for normal DNA replication and dNTP pool regulation. However the reason why they are essential is not well understood. We investigated this by mutating RAD53 and analyzing dNTP pools and gene interactions. We show that Rad53 is essential in S-phase due to its role in regulating basal dNTP levels by action in the Dun1 pathway that regulates RNR and Rad53’s compensatory kinase function if dNTP levels are perturbed.In conclusion we present further evidence of the importance of dNTP pools in the maintenance of genome integrity and shed more light on the complex regulation of dNTP levels.
  •  
8.
  • Buckland, Robert J, et al. (författare)
  • Increased and Imbalanced dNTP Pools Symmetrically Promote Both Leading and Lagging Strand Replication Infidelity
  • 2014
  • Ingår i: PLOS Genetics. - : Public Library of Science (PLoS). - 1553-7390 .- 1553-7404. ; 10:12
  • Tidskriftsartikel (refereegranskat)abstract
    • The fidelity of DNA replication requires an appropriate balance of dNTPs, yet the nascent leading and lagging strands of the nuclear genome are primarily synthesized by replicases that differ in subunit composition, protein partnerships and biochemical properties, including fidelity. These facts pose the question of whether imbalanced dNTP pools differentially influence leading and lagging strand replication fidelity. Here we test this possibility by examining strand-specific replication infidelity driven by a mutation in yeast ribonucleotide reductase, rnr1-Y285A, that leads to elevated dTTP and dCTP concentrations. The results for the CAN1 mutational reporter gene present in opposite orientations in the genome reveal that the rates, and surprisingly even the sequence contexts, of replication errors are remarkably similar for leading and lagging strand synthesis. Moreover, while many mismatches driven by the dNTP pool imbalance are efficiently corrected by mismatch repair, others are repaired less efficiently, especially those in sequence contexts suggesting reduced proofreading due to increased mismatch extension driven by the high dTTP and dCTP concentrations. Thus the two DNA strands of the nuclear genome are at similar risk of mutations resulting from this dNTP pool imbalance, and this risk is not completely suppressed even when both major replication error correction mechanisms are genetically intact.
  •  
9.
  • Cerritelli, Susana M, et al. (författare)
  • High density of unrepaired genomic ribonucleotides leads to Topoisomerase 1-mediated severe growth defects in absence of ribonucleotide reductase
  • 2020
  • Ingår i: Nucleic Acids Research. - : Oxford Academic. - 0305-1048 .- 1362-4962. ; 48:8, s. 4274-4297
  • Tidskriftsartikel (refereegranskat)abstract
    • Cellular levels of ribonucleoside triphosphates (rNTPs) are much higher than those of deoxyribonucleoside triphosphates (dNTPs), thereby influencing the frequency of incorporation of ribonucleoside monophosphates (rNMPs) by DNA polymerases (Pol) into DNA. RNase H2-initiated ribonucleotide excision repair (RER) efficiently removes single rNMPs in genomic DNA. However, processing of rNMPs by Topoisomerase 1 (Top1) in absence of RER induces mutations and genome instability. Here, we greatly increased the abundance of genomic rNMPs in Saccharomyces cerevisiae by depleting Rnr1, the major subunit of ribonucleotide reductase, which converts ribonucleotides to deoxyribonucleotides. We found that in strains that are depleted of Rnr1, RER-deficient, and harbor an rNTP-permissive replicative Pol mutant, excessive accumulation of single genomic rNMPs severely compromised growth, but this was reversed in absence of Top1. Thus, under Rnr1 depletion, limited dNTP pools slow DNA synthesis by replicative Pols and provoke the incorporation of high levels of rNMPs in genomic DNA. If a threshold of single genomic rNMPs is exceeded in absence of RER and presence of limited dNTP pools, Top1-mediated genome instability leads to severe growth defects. Finally, we provide evidence showing that accumulation of RNA/DNA hybrids in absence of RNase H1 and RNase H2 leads to cell lethality under Rnr1 depletion.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 87
Typ av publikation
tidskriftsartikel (78)
doktorsavhandling (5)
bokkapitel (2)
annan publikation (1)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (78)
övrigt vetenskapligt/konstnärligt (9)
Författare/redaktör
Chabes, Andrei (60)
Sharma, Sushma (32)
Chabes, Andrei, Prof ... (24)
Marjavaara, Lisette (16)
Nilsson, Anna-Karin (11)
Kunkel, Thomas A (9)
visa fler...
Thelander, Lars (8)
Johansson, Erik (7)
Watt, Danielle L (7)
Pasero, Philippe (5)
Domkin, Vladimir (5)
Wanrooij, Paulina H. (5)
Kumar, Dinesh (4)
Lengronne, Armelle (4)
Keszthelyi, Andrea (4)
Hofer, Anders (3)
Barthe, Antoine (3)
Shcherbakova, Polina ... (3)
Zhang, Zhiguo (3)
Ceder, Yvonne (2)
Trygg, Johan (2)
Persson, Margareta (2)
Kupiec, Martin (2)
Merenyi, Gabor (2)
Visakorpi, Tapio (2)
Bacal, Julien (2)
Pardo, Benjamin (2)
Barfeld, Stefan J (2)
Fazli, Ladan (2)
Urbanucci, Alfonso (2)
Kaukoniemi, Kirsi M (2)
Rennie, Paul S (2)
Mills, Ian G (2)
Navarrete, Clara, 19 ... (2)
Engqvist, Martin K M ... (2)
Clausen, Anders R, 1 ... (2)
Rentoft, Matilda (2)
Buckland, Robert, 19 ... (2)
Stillman, Bruce (2)
Chabes, Anna Lena (2)
Zhao, Xiaolan (2)
Rothstein, Rodney (2)
Lundström, Else-Brit ... (2)
Burgers, Peter M (2)
Buckland, Robert (2)
Padioleau, Ismaël (2)
Dmowski, Michal (2)
Makiela-Dzbenska, Ka ... (2)
Fijalkowska, Iwona J ... (2)
Earp, Caroline (2)
visa färre...
Lärosäte
Umeå universitet (86)
Göteborgs universitet (3)
Chalmers tekniska högskola (3)
Karolinska Institutet (2)
Uppsala universitet (1)
Stockholms universitet (1)
visa fler...
Lunds universitet (1)
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (86)
Franska (1)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (64)
Naturvetenskap (14)
Lantbruksvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy