SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Chakraborty D) ;lar1:(cth)"

Search: WFRF:(Chakraborty D) > Chalmers University of Technology

  • Result 1-10 of 23
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • 2019
  • Journal article (peer-reviewed)
  •  
2.
  • Psaridi, A., et al. (author)
  • Discovery of two warm mini-Neptunes with contrasting densities orbiting the young K3V star TOI-815
  • 2024
  • In: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 685
  • Journal article (peer-reviewed)abstract
    • We present the discovery and characterization of two warm mini-Neptunes transiting the K3V star TOI-815 in a K–M binary system. Analysis of its spectra and rotation period reveal the star to be young, with an age of 200+−400200 Myr. TOI-815b has a 11.2-day period and a radius of 2.94 ± 0.05 R+ with transits observed by TESS, CHEOPS, ASTEP, and LCOGT. The outer planet, TOI-815c, has a radius of 2.62 ± 0.10 R+, based on observations of three nonconsecutive transits with TESS; targeted CHEOPS photometry and radial velocity follow-up with ESPRESSO were required to confirm the 35-day period. ESPRESSO confirmed the planetary nature of both planets and measured masses of 7.6 ± 1.5 M+ (ρP = 1.64+−003331 g cm−3) and 23.5 ± 2.4 M+ (ρP = 7.2+−1110 g cm−3), respectively. Thus, the planets have very different masses, which is unusual for compact multi-planet systems. Moreover, our statistical analysis of mini-Neptunes orbiting FGK stars suggests that weakly irradiated planets tend to have higher bulk densities compared to those undergoing strong irradiation. This could be ascribed to their cooler atmospheres, which are more compressed and denser. Internal structure modeling of TOI-815b suggests it likely has a H-He atmosphere that constitutes a few percent of the total planet mass, or higher if the planet is assumed to have no water. In contrast, the measured mass and radius of TOI-815c can be explained without invoking any atmosphere, challenging planetary formation theories. Finally, we infer from our measurements that the star is viewed close to pole-on, which implies a spin-orbit misalignment at the 3σ level. This emphasizes the peculiarity of the system’s orbital architecture, and probably hints at an eventful dynamical history.
  •  
3.
  •  
4.
  • Boretzky, K., et al. (author)
  • NeuLAND: The high-resolution neutron time-of-flight spectrometer for R 3 B at FAIR
  • 2021
  • In: Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. - : Elsevier BV. - 0168-9002. ; 1014
  • Journal article (peer-reviewed)abstract
    • NeuLAND (New Large-Area Neutron Detector) is the next-generation neutron detector for the R3B (Reactions with Relativistic Radioactive Beams) experiment at FAIR (Facility for Antiproton and Ion Research). NeuLAND detects neutrons with energies from 100 to 1000 MeV, featuring a high detection efficiency, a high spatial and time resolution, and a large multi-neutron reconstruction efficiency. This is achieved by a highly granular design of organic scintillators: 3000 individual submodules with a size of 5 × 5 × 250 cm3 are arranged in 30 double planes with 100 submodules each, providing an active area of 250 × 250 cm2 and a total depth of 3 m. The spatial resolution due to the granularity together with a time resolution of σt≤ 150 ps ensures high-resolution capabilities. In conjunction with calorimetric properties, a multi-neutron reconstruction efficiency of 50% to 70% for four-neutron events will be achieved, depending on both the emission scenario and the boundary conditions allowed for the reconstruction method. We present in this paper the final design of the detector as well as results from test measurements and simulations on which this design is based.
  •  
5.
  • Caesar, C., et al. (author)
  • Beyond the neutron drip line: The unbound oxygen isotopes O-25 and O-26
  • 2013
  • In: Physical Review C - Nuclear Physics. - 2469-9985 .- 2469-9993 .- 0556-2813. ; 88:3
  • Journal article (peer-reviewed)abstract
    • The very neutron-rich oxygen isotopes O-25 and O-26 are investigated experimentally and theoretically. The unbound states are populated in an experiment performed at the R3B-LAND setup at GSI via proton-knockout reactions from F-26 and F-27 at relativistic energies around 442 and 414 MeV/nucleon, respectively. From the kinematically complete measurement of the decay into O-24 plus one or two neutrons, the O-25 ground-state energy and width are determined, and upper limits for the O-26 ground-state energy and lifetime are extracted. In addition, the results provide indications for an excited state in O-26 at around 4 MeV. The experimental findings are compared to theoretical shell-model calculations based on chiral two- and three-nucleon (3N) forces, including for the first time residual 3N forces, which are shown to be amplified as valence neutrons are added.
  •  
6.
  • Altstadt, S.G., et al. (author)
  • B-13,B-14(n,gamma) via Coulomb Dissociation for Nucleosynthesis towards the r-Process
  • 2014
  • In: Nuclear Data Sheets. - : Elsevier BV. - 1095-9904 .- 0090-3752. ; 120, s. 197-200
  • Conference paper (peer-reviewed)abstract
    • Radioactive beams of 14,15B produced by fragmentation of a primary 40Ar beam were directed onto a Pb target to investigate the neutron breakup within the Coulomb field. The experiment was performed at the LAND/R3B setup. Preliminary results for the Coulomb dissociation cross sections as well as for the astrophysically interesting inverse reactions, 13,14B(n,γ), are presented.
  •  
7.
  • Heine, M., et al. (author)
  • Determination of the neutron-capture rate of C-17 for r-process nucleosynthesis
  • 2017
  • In: Physical Review C. - 2469-9985 .- 2469-9993. ; 95:1, s. Article no 014613 -
  • Journal article (peer-reviewed)abstract
    • With the (RB)-B-3-LAND setup at GSI we have measured exclusive relative-energy spectra of the Coulomb dissociation of C-18 at a projectile energy around 425A MeV on a lead target, which are needed to determine the radiative neutron-capture cross sections of C-17 into the ground state of C-18. Those data have been used to constrain theoretical calculations for transitions populating excited states in C-18. This allowed to derive the astrophysical cross section sigma(n gamma)*. accounting for the thermal population of C-17 target states in astrophysical scenarios. The experimentally verified capture rate is significantly lower than those of previously obtained Hauser-Feshbach estimations at temperatures T-9
  •  
8.
  • Röder, M., et al. (author)
  • Coulomb dissociation of 20,21 N
  • 2016
  • In: Physical Review C - Nuclear Physics. - 2469-9985 .- 2469-9993 .- 0556-2813. ; 93:6
  • Journal article (peer-reviewed)abstract
    • Neutron-rich light nuclei and their reactions play an important role in the creation of chemical elements. Here, data from a Coulomb dissociation experiment on N20,21 are reported. Relativistic N20,21 ions impinged on a lead target and the Coulomb dissociation cross section was determined in a kinematically complete experiment. Using the detailed balance theorem, the N19(n,γ)N20 and N20(n,γ)N21 excitation functions and thermonuclear reaction rates have been determined. The N19(n,γ)N20 rate is up to a factor of 5 higher at T
  •  
9.
  • Thies, Ronja, 1987, et al. (author)
  • Systematic investigation of projectile fragmentation using beams of unstable B and C isotopes
  • 2016
  • In: Physical Review C - Nuclear Physics. - 2469-9985 .- 2469-9993 .- 0556-2813. ; 93:5
  • Journal article (peer-reviewed)abstract
    • Models describing nuclear fragmentation and fragmentation fission deliver important input for planning nuclear physics experiments and future radioactive ion beam facilities. These models are usually benchmarked against data from stable beam experiments. In the future, two-step fragmentation reactions with exotic nuclei as stepping stones are a promising tool for reaching the most neutron-rich nuclei, creating a need for models to describe also these reactions. Purpose: We want to extend the presently available data on fragmentation reactions towards the light exotic region on the nuclear chart. Furthermore, we want to improve the understanding of projectile fragmentation especially for unstable isotopes. Method: We have measured projectile fragments from C10,12-18 and B10-15 isotopes colliding with a carbon target. These measurements were all performed within one experiment, which gives rise to a very consistent data set. We compare our data to model calculations. Results: One-proton removal cross sections with different final neutron numbers (1pxn) for relativistic C10,12-18 and B10-15 isotopes impinging on a carbon target. Comparing model calculations to the data, we find that the epax code is not able to describe the data satisfactorily. Using abrabla07 on the other hand, we find that the average excitation energy per abraded nucleon needs to be decreased from 27 MeV to 8.1 MeV. With that decrease abrabla07 describes the data surprisingly well. Conclusions: Extending the available data towards light unstable nuclei with a consistent set of new data has allowed a systematic investigation of the role of the excitation energy induced in projectile fragmentation. Most striking is the apparent mass dependence of the average excitation energy per abraded nucleon. Nevertheless, this parameter, which has been related to final-state interactions, requires further study.
  •  
10.
  • Chakraborty, S., et al. (author)
  • Ground-state configuration of neutron-rich Aluminum isotopes through Coulomb breakup
  • 2014
  • In: EPJ Web of Conferences. - : EDP Sciences. - 2101-6275 .- 2100-014X. ; 66
  • Conference paper (peer-reviewed)abstract
    • Neutron-rich 34,35Al isotopes have been studied through Coulomb excitation using LAND-FRS setup at GSI, Darmstadt. The method of invariant mass analysis has been used to reconstruct the excitation energy of the nucleus prior to decay. Comparison of experimental CD cross-section with direct breakup model calculation with neutron in p3/2 orbital favours 34Al(g.s) - νp3/2 as ground state configuration of 35Al. But ground state configuration of 34Al is complicated as evident from γ-ray spectra of 33Al after Coulomb breakup of 34Al. © Owned by the authors, published by EDP Sciences, 2014.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 23

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view