SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Chang Hong) ;lar1:(gu)"

Sökning: WFRF:(Chang Hong) > Göteborgs universitet

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Klionsky, Daniel J., et al. (författare)
  • Guidelines for the use and interpretation of assays for monitoring autophagy
  • 2012
  • Ingår i: Autophagy. - : Informa UK Limited. - 1554-8635 .- 1554-8627. ; 8:4, s. 445-544
  • Forskningsöversikt (refereegranskat)abstract
    • In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field.
  •  
2.
  • 2019
  • Tidskriftsartikel (refereegranskat)
  •  
3.
  • Ariyawansa, Hiran A., et al. (författare)
  • Fungal diversity notes 111–252—taxonomic and phylogenetic contributions to fungal taxa
  • 2015
  • Ingår i: Fungal diversity. - : Springer Science and Business Media LLC. - 1560-2745 .- 1878-9129. ; 75, s. 27-274
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper is a compilation of notes on 142 fungal taxa, including five new families, 20 new genera, and 100 new species, representing a wide taxonomic and geographic range. The new families, Ascocylindricaceae, Caryosporaceae and Wicklowiaceae (Ascomycota) are introduced based on their distinct lineages and unique morphology. The new Dothideomycete genera Pseudomassariosphaeria (Amniculicolaceae), Heracleicola, Neodidymella and P s e u d o m i c ros p h a e r i o p s i s ( D id y m e l l a c e a e ) , P s e u d o p i t h o m y c e s ( D i d y m o s p h a e r i a c e a e ) , Brunneoclavispora, Neolophiostoma and Sulcosporium (Halotthiaceae), Lophiohelichrysum (Lophiostomataceae), G a l l i i c o l a , Popul o c re s c e n t i a a nd Va g i c o l a (Phaeosphaeriaceae), Ascocylindrica (Ascocylindricaceae), E l o n g a t o p e d i c e l l a t a ( R o u s s o e l l a c e a e ) , Pseudoasteromassaria (Latoruaceae) and Pseudomonodictys (Macrodiplodiopsidaceae) are introduced. The newly described species of Dothideomycetes (Ascomycota) are Pseudomassariosphaeria bromicola (Amniculicolaceae), Flammeascoma lignicola (Anteagloniaceae), Ascocylindrica marina (Ascocylindricaceae) , Lembosia xyliae (Asterinaceae), Diplodia crataegicola and Diplodia galiicola ( B o t r yosphae r i a cea e ) , Caryospor a aquat i c a (Caryosporaceae), Heracleicola premilcurensis and Neodi dymell a thai landi cum (Didymellaceae) , Pseudopithomyces palmicola (Didymosphaeriaceae), Floricola viticola (Floricolaceae), Brunneoclavispora bambusae, Neolophiostoma pigmentatum and Sulcosporium thailandica (Halotthiaceae), Pseudoasteromassaria fagi (Latoruaceae), Keissleriella dactylidicola (Lentitheciaceae), Lophiohelichrysum helichrysi (Lophiostomataceae), Aquasubmersa japonica (Lophiotremataceae) , Pseudomonodictys tectonae (Macrodiplodiopsidaceae), Microthyrium buxicola and Tumidispora shoreae (Microthyriaceae), Alloleptosphaeria clematidis, Allophaeosphaer i a c y t i s i , Allophaeosphae r i a subcylindrospora, Dematiopleospora luzulae, Entodesmium artemisiae, Galiicola pseudophaeosphaeria, Loratospora(Basidiomycota) are introduced together with a new genus Neoantrodiella (Neoantrodiellaceae), here based on both morphology coupled with molecular data. In the class Agaricomycetes, Agaricus pseudolangei, Agaricus haematinus, Agaricus atrodiscus and Agaricus exilissimus (Agaricaceae) , Amanita m e l l e i a l b a , Amanita pseudosychnopyramis and Amanita subparvipantherina (Amanitaceae), Entoloma calabrum, Cora barbulata, Dictyonema gomezianum and Inocybe granulosa (Inocybaceae), Xerocomellus sarnarii (Boletaceae), Cantharellus eucalyptorum, Cantharellus nigrescens, Cantharellus tricolor and Cantharellus variabilicolor (Cantharellaceae), Cortinarius alboamarescens, Cortinarius brunneoalbus, Cortinarius ochroamarus, Cortinarius putorius and Cortinarius seidlii (Cortinariaceae), Hymenochaete micropora and Hymenochaete subporioides (Hymenochaetaceae), Xylodon ramicida (Schizoporaceae), Colospora andalasii (Polyporaceae), Russula guangxiensis and Russula hakkae (Russulaceae), Tremella dirinariae, Tremella graphidis and Tremella pyrenulae (Tremellaceae) are introduced. Four new combinations Neoantrodiella gypsea, Neoantrodiella thujae (Neoantrodiellaceae), Punctulariopsis cremeoalbida, Punctulariopsis efibulata (Punctulariaceae) are also introduced here for the division Basidiomycota. Furthermore Absidia caatinguensis, Absidia koreana and Gongronella koreana (Cunninghamellaceae), Mortierella pisiformis and Mortierella formosana (Mortierellaceae) are newly introduced in the Zygomycota, while Neocallimastix cameroonii and Piromyces irregularis (Neocallimastigaceae) ar e i n t roduced i n the Neocallimastigomycota. Reference specimens or changes in classification and notes are provided for Alternaria ethzedia, Cucurbitaria ephedricola, Austropleospora, Austropleospora archidendri, Byssosphaeria rhodomphala, Lophiostoma caulium, Pseudopithomyces maydicus, Massariosphaeria, Neomassariosphaeria and Pestalotiopsis montellica.
  •  
4.
  • Davies, Stuart J., et al. (författare)
  • ForestGEO: Understanding forest diversity and dynamics through a global observatory network
  • 2021
  • Ingår i: Biological Conservation. - : Elsevier BV. - 0006-3207. ; 253
  • Tidskriftsartikel (refereegranskat)abstract
    • ForestGEO is a network of scientists and long-term forest dynamics plots (FDPs) spanning the Earth's major forest types. ForestGEO's mission is to advance understanding of the diversity and dynamics of forests and to strengthen global capacity for forest science research. ForestGEO is unique among forest plot networks in its large-scale plot dimensions, censusing of all stems ≥1 cm in diameter, inclusion of tropical, temperate and boreal forests, and investigation of additional biotic (e.g., arthropods) and abiotic (e.g., soils) drivers, which together provide a holistic view of forest functioning. The 71 FDPs in 27 countries include approximately 7.33 million living trees and about 12,000 species, representing 20% of the world's known tree diversity. With >1300 published papers, ForestGEO researchers have made significant contributions in two fundamental areas: species coexistence and diversity, and ecosystem functioning. Specifically, defining the major biotic and abiotic controls on the distribution and coexistence of species and functional types and on variation in species' demography has led to improved understanding of how the multiple dimensions of forest diversity are structured across space and time and how this diversity relates to the processes controlling the role of forests in the Earth system. Nevertheless, knowledge gaps remain that impede our ability to predict how forest diversity and function will respond to climate change and other stressors. Meeting these global research challenges requires major advances in standardizing taxonomy of tropical species, resolving the main drivers of forest dynamics, and integrating plot-based ground and remote sensing observations to scale up estimates of forest diversity and function, coupled with improved predictive models. However, they cannot be met without greater financial commitment to sustain the long-term research of ForestGEO and other forest plot networks, greatly expanded scientific capacity across the world's forested nations, and increased collaboration and integration among research networks and disciplines addressing forest science.
  •  
5.
  • Chang, Hong, et al. (författare)
  • Identification of a Bipolar Disorder Vulnerable Gene CHDH at 3p21.1.
  • 2017
  • Ingår i: Molecular neurobiology. - : Springer Science and Business Media LLC. - 1559-1182 .- 0893-7648. ; 54:7, s. 5166-5176
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome-wide analysis (GWA) is an effective strategy to discover extreme effects surpassing genome-wide significant levels in studying complex disorders; however, when sample size is limited, the true effects may fail to achieve genome-wide significance. In such case, there may be authentic results among the pools of nominal candidates, and an alternative approach is to consider nominal candidates but are replicable across different samples. Here, we found that mRNA expression of the choline dehydrogenase gene (CHDH) was uniformly upregulated in the brains of bipolar disorder (BPD) patients compared with healthy controls across different studies. Follow-up genetic analyses of CHDH variants in multiple independent clinical datasets (including 11,564 cases and 17,686 controls) identified a risk SNP rs9836592 showing consistent associations with BPD (P meta=5.72×10(-4)), and the risk allele indicated an increased CHDH expression in multiple neuronal tissues (lowest P=6.70×10(-16)). These converging results may identify a nominal but true BPD susceptibility gene CHDH. Further exploratory analysis revealed suggestive associations of rs9836592 with childhood intelligence (P=0.044) and educational attainment (P=0.0039), a "proxy phenotype" of general cognitive abilities. Intriguingly, the CHDH gene is located at chromosome 3p21.1, a risk region implicated in previous BPD genome-wide association studies (GWAS), but CHDH is lying outside of the core GWAS linkage disequilibrium (LD) region, and our studied SNP rs9836592 is ∼1.2Mb 3' downstream of the previous GWAS loci (e.g., rs2251219) with no LD between them; thus, the association observed here is unlikely a reflection of previous GWAS signals. In summary, our results imply that CHDH may play a previously unknown role in the etiology of BPD and also highlight the informative value of integrating gene expression and genetic code in advancing our understanding of its biological basis.
  •  
6.
  •  
7.
  • Jiang, X., et al. (författare)
  • Shared heritability and functional enrichment across six solid cancers
  • 2019
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Quantifying the genetic correlation between cancers can provide important insights into the mechanisms driving cancer etiology. Using genome-wide association study summary statistics across six cancer types based on a total of 296,215 cases and 301,319 controls of European ancestry, here we estimate the pair-wise genetic correlations between breast, colorectal, head/neck, lung, ovary and prostate cancer, and between cancers and 38 other diseases. We observed statistically significant genetic correlations between lung and head/neck cancer (r(g) = 0.57, p = 4.6 x 10(-8)), breast and ovarian cancer (r(g) = 0.24, p = 7 x 10(-5)), breast and lung cancer (r(g) = 0.18, p = 1.5 x 10(-6)) and breast and colorectal cancer (r(g) = 0.15, p = 1.1 x 10(-4)). We also found that multiple cancers are genetically correlated with non-cancer traits including smoking, psychiatric diseases and metabolic characteristics. Functional enrichment analysis revealed a significant excess contribution of conserved and regulatory regions to cancer heritability. Our comprehensive analysis of cross-cancer heritability suggests that solid tumors arising across tissues share in part a common germline genetic basis.
  •  
8.
  • Phukhamsakda, Chayanard, et al. (författare)
  • The numbers of fungi: contributions from traditional taxonomic studies and challenges of metabarcoding
  • 2022
  • Ingår i: Fungal diversity. - : Springer Science and Business Media LLC. - 1560-2745 .- 1878-9129. ; 114:1, s. 327-386
  • Tidskriftsartikel (refereegranskat)abstract
    • The global diversity of fungi has been estimated using several different approaches. There is somewhere between 2–11 million estimated species, but the number of formally described taxa is around 150,000, a tiny fraction of the total. In this paper, we examine 12 ascomycete genera as case studies to establish trends in fungal species descriptions, and introduce new species in each genus. To highlight the importance of traditional morpho-molecular methods in publishing new species, we introduce novel taxa in 12 genera that are considered to have low species discovery. We discuss whether the species are likely to be rare or due to a lack of extensive sampling and classification. The genera are Apiospora, Bambusicola, Beltrania, Capronia, Distoseptispora, Endocalyx, Neocatenulostroma, Neodeightonia, Paraconiothyrium, Peroneutypa, Phaeoacremonium and Vanakripa. We discuss host-specificity in selected genera and compare the number of species epithets in each genus with the number of ITS (barcode) sequences deposited in GenBank and UNITE. We furthermore discuss the relationship between the divergence times of these genera with those of their hosts. We hypothesize whether there might be more species in these genera and discuss hosts and habitats that should be investigated for novel species discovery.
  •  
9.
  • Thompson, Paul M., et al. (författare)
  • The ENIGMA Consortium : large-scale collaborative analyses of neuroimaging and genetic data
  • 2014
  • Ingår i: BRAIN IMAGING BEHAV. - : Springer Science and Business Media LLC. - 1931-7557 .- 1931-7565. ; 8:2, s. 153-182
  • Tidskriftsartikel (refereegranskat)abstract
    • The Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) Consortium is a collaborative network of researchers working together on a range of large-scale studies that integrate data from 70 institutions worldwide. Organized into Working Groups that tackle questions in neuroscience, genetics, and medicine, ENIGMA studies have analyzed neuroimaging data from over 12,826 subjects. In addition, data from 12,171 individuals were provided by the CHARGE consortium for replication of findings, in a total of 24,997 subjects. By meta-analyzing results from many sites, ENIGMA has detected factors that affect the brain that no individual site could detect on its own, and that require larger numbers of subjects than any individual neuroimaging study has currently collected. ENIGMA's first project was a genome-wide association study identifying common variants in the genome associated with hippocampal volume or intracranial volume. Continuing work is exploring genetic associations with subcortical volumes (ENIGMA2) and white matter microstructure (ENIGMA-DTI). Working groups also focus on understanding how schizophrenia, bipolar illness, major depression and attention deficit/hyperactivity disorder (ADHD) affect the brain. We review the current progress of the ENIGMA Consortium, along with challenges and unexpected discoveries made on the way.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy