SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Chang Hong) ;srt2:(2015-2019);lar1:(ki)"

Sökning: WFRF:(Chang Hong) > (2015-2019) > Karolinska Institutet

  • Resultat 1-10 av 24
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Sampson, Joshua N., et al. (författare)
  • Analysis of Heritability and Shared Heritability Based on Genome-Wide Association Studies for 13 Cancer Types
  • 2015
  • Ingår i: Journal of the National Cancer Institute. - : Oxford University Press (OUP). - 0027-8874 .- 1460-2105. ; 107:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Studies of related individuals have consistently demonstrated notable familial aggregation of cancer. We aim to estimate the heritability and genetic correlation attributable to the additive effects of common single-nucleotide polymorphisms (SNPs) for cancer at 13 anatomical sites. Methods: Between 2007 and 2014, the US National Cancer Institute has generated data from genome-wide association studies (GWAS) for 49 492 cancer case patients and 34 131 control patients. We apply novel mixed model methodology (GCTA) to this GWAS data to estimate the heritability of individual cancers, as well as the proportion of heritability attributable to cigarette smoking in smoking-related cancers, and the genetic correlation between pairs of cancers. Results: GWAS heritability was statistically significant at nearly all sites, with the estimates of array-based heritability, h(l)(2), on the liability threshold (LT) scale ranging from 0.05 to 0.38. Estimating the combined heritability of multiple smoking characteristics, we calculate that at least 24% (95% confidence interval [CI] = 14% to 37%) and 7% (95% CI = 4% to 11%) of the heritability for lung and bladder cancer, respectively, can be attributed to genetic determinants of smoking. Most pairs of cancers studied did not show evidence of strong genetic correlation. We found only four pairs of cancers with marginally statistically significant correlations, specifically kidney and testes (rho = 0.73, SE = 0.28), diffuse large B-cell lymphoma (DLBCL) and pediatric osteosarcoma (rho = 0.53, SE = 0.21), DLBCL and chronic lymphocytic leukemia (CLL) (rho = 0.51, SE = 0.18), and bladder and lung (rho = 0.35, SE = 0.14). Correlation analysis also indicates that the genetic architecture of lung cancer differs between a smoking population of European ancestry and a nonsmoking Asian population, allowing for the possibility that the genetic etiology for the same disease can vary by population and environmental exposures. Conclusion: Our results provide important insights into the genetic architecture of cancers and suggest new avenues for investigation.
  •  
3.
  • 2019
  • Tidskriftsartikel (refereegranskat)
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  • Chang, Hong, et al. (författare)
  • Identification of a Bipolar Disorder Vulnerable Gene CHDH at 3p21.1.
  • 2017
  • Ingår i: Molecular neurobiology. - : Springer Science and Business Media LLC. - 1559-1182 .- 0893-7648. ; 54:7, s. 5166-5176
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome-wide analysis (GWA) is an effective strategy to discover extreme effects surpassing genome-wide significant levels in studying complex disorders; however, when sample size is limited, the true effects may fail to achieve genome-wide significance. In such case, there may be authentic results among the pools of nominal candidates, and an alternative approach is to consider nominal candidates but are replicable across different samples. Here, we found that mRNA expression of the choline dehydrogenase gene (CHDH) was uniformly upregulated in the brains of bipolar disorder (BPD) patients compared with healthy controls across different studies. Follow-up genetic analyses of CHDH variants in multiple independent clinical datasets (including 11,564 cases and 17,686 controls) identified a risk SNP rs9836592 showing consistent associations with BPD (P meta=5.72×10(-4)), and the risk allele indicated an increased CHDH expression in multiple neuronal tissues (lowest P=6.70×10(-16)). These converging results may identify a nominal but true BPD susceptibility gene CHDH. Further exploratory analysis revealed suggestive associations of rs9836592 with childhood intelligence (P=0.044) and educational attainment (P=0.0039), a "proxy phenotype" of general cognitive abilities. Intriguingly, the CHDH gene is located at chromosome 3p21.1, a risk region implicated in previous BPD genome-wide association studies (GWAS), but CHDH is lying outside of the core GWAS linkage disequilibrium (LD) region, and our studied SNP rs9836592 is ∼1.2Mb 3' downstream of the previous GWAS loci (e.g., rs2251219) with no LD between them; thus, the association observed here is unlikely a reflection of previous GWAS signals. In summary, our results imply that CHDH may play a previously unknown role in the etiology of BPD and also highlight the informative value of integrating gene expression and genetic code in advancing our understanding of its biological basis.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 24

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy