SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Chanock Stephen) ;lar1:(umu);pers:(Kraft Peter)"

Search: WFRF:(Chanock Stephen) > Umeå University > Kraft Peter

  • Result 1-10 of 58
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Amundadottir, Laufey, et al. (author)
  • Genome-wide association study identifies variants in the ABO locus associated with susceptibility to pancreatic cancer.
  • 2009
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 41, s. 986-990
  • Journal article (peer-reviewed)abstract
    • We conducted a two-stage genome-wide association study of pancreatic cancer, a cancer with one of the lowest survival rates worldwide. We genotyped 558,542 SNPs in 1,896 individuals with pancreatic cancer and 1,939 controls drawn from 12 prospective cohorts plus one hospital-based case-control study. We conducted a combined analysis of these groups plus an additional 2,457 affected individuals and 2,654 controls from eight case-control studies, adjusting for study, sex, ancestry and five principal components. We identified an association between a locus on 9q34 and pancreatic cancer marked by the SNP rs505922 (combined P = 5.37 x 10(-8); multiplicative per-allele odds ratio 1.20; 95% confidence interval 1.12-1.28). This SNP maps to the first intron of the ABO blood group gene. Our results are consistent with earlier epidemiologic evidence suggesting that people with blood group O may have a lower risk of pancreatic cancer than those with groups A or B.
  •  
2.
  • Fu, Yi-Ping, et al. (author)
  • The 19q12 Bladder Cancer GWAS Signal : Association with Cyclin E Function and Aggressive Disease
  • 2014
  • In: Cancer Research. - 0008-5472 .- 1538-7445. ; 74:20, s. 5808-5818
  • Journal article (peer-reviewed)abstract
    • A genome-wide association study (GWAS) of bladder cancer identified a genetic marker rs8102137 within the 19q12 region as a novel susceptibility variant. This marker is located upstream of the CCNE1 gene, which encodes cyclin E, a cell-cycle protein. We performed genetic fine-mapping analysis of the CCNE1 region using data from two bladder cancer GWAS (5,942 cases and 10,857 controls). We found that the original GWAS marker rs8102137 represents a group of 47 linked SNPs (with r(2) >= 0.7) associated with increased bladder cancer risk. From this group, we selected a functional promoter variant rs7257330, which showed strong allele-specific binding of nuclear proteins in several cell lines. In both GWASs, rs7257330 was associated only with aggressive bladder cancer, with a combined per-allele OR = 1.18 [95% confidence interval (CI), 1.09-1.27, P = 4.67 x 10(-5)] versus OR = 1.01 (95% CI, 0.93-1.10, P = 0.79) for nonaggressive disease, with P = 0.0015 for case-only analysis. Cyclin E protein expression analyzed in 265 bladder tumors was increased in aggressive tumors (P = 0.013) and, independently, with each rs7257330-A risk allele (P-trend = 0.024). Overexpression of recombinant cyclin E in cell lines caused significant acceleration of cell cycle. In conclusion, we defined the 19q12 signal as the first GWAS signal specific for aggressive bladder cancer. Molecular mechanisms of this genetic association may be related to cyclin E overexpression and alteration of cell cycle in carriers of CCNE1 risk variants. In combination with established bladder cancer risk factors and other somatic and germline genetic markers, the CCNE1 variants could be useful for inclusion into bladder cancer risk prediction models.
  •  
3.
  • King, Sontoria D., et al. (author)
  • Genetic Susceptibility to Nonalcoholic Fatty Liver Disease and Risk for Pancreatic Cancer: Mendelian Randomization
  • 2023
  • In: Cancer Epidemiology, Biomarkers and Prevention. - : American Association For Cancer Research (AACR). - 1055-9965 .- 1538-7755. ; 32:9, s. 1265-1269
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: There are conflicting data on whether nonalcoholic fatty liver disease (NAFLD) is associated with susceptibility to pancreatic cancer. Using Mendelian randomization (MR), we investigated the relationship between genetic predisposition to NAFLD and risk for pancreatic cancer.METHODS: Data from genome-wide association studies (GWAS) within the Pancreatic Cancer Cohort Consortium (PanScan; cases n = 5,090, controls n = 8,733) and the Pancreatic Cancer Case Control Consortium (PanC4; cases n = 4,163, controls n = 3,792) were analyzed. We used data on 68 genetic variants with four different MR methods [inverse variance weighting (IVW), MR-Egger, simple median, and penalized weighted median] separately to predict genetic heritability of NAFLD. We then assessed the relationship between each of the four MR methods and pancreatic cancer risk, using logistic regression to calculate ORs and 95% confidence intervals (CI), adjusting for PC risk factors, including obesity and diabetes.RESULTS: No association was found between genetically predicted NAFLD and pancreatic cancer risk in the PanScan or PanC4 samples [e.g., PanScan, IVW OR, 1.04; 95% confidence interval (CI), 0.88-1.22; MR-Egger OR, 0.89; 95% CI, 0.65-1.21; PanC4, IVW OR, 1.07; 95% CI, 0.90-1.27; MR-Egger OR, 0.93; 95% CI, 0.67-1.28]. None of the four MR methods indicated an association between genetically predicted NAFLD and pancreatic cancer risk in either sample.CONCLUSIONS: Genetic predisposition to NAFLD is not associated with pancreatic cancer risk.IMPACT: Given the close relationship between NAFLD and metabolic conditions, it is plausible that any association between NAFLD and pancreatic cancer might reflect host metabolic perturbations (e.g., obesity, diabetes, or metabolic syndrome) and does not necessarily reflect a causal relationship between NAFLD and pancreatic cancer.
  •  
4.
  • Klein, Alison P., et al. (author)
  • An absolute risk model to identify individuals at elevated risk for pancreatic cancer in the general population.
  • 2013
  • In: PLOS ONE. - : Public Library of Science. - 1932-6203. ; 8:9
  • Journal article (peer-reviewed)abstract
    • PURPOSE: We developed an absolute risk model to identify individuals in the general population at elevated risk of pancreatic cancer.PATIENTS AND METHODS: Using data on 3,349 cases and 3,654 controls from the PanScan Consortium, we developed a relative risk model for men and women of European ancestry based on non-genetic and genetic risk factors for pancreatic cancer. We estimated absolute risks based on these relative risks and population incidence rates.RESULTS: Our risk model included current smoking (multivariable adjusted odds ratio (OR) and 95% confidence interval: 2.20 [1.84-2.62]), heavy alcohol use (>3 drinks/day) (OR: 1.45 [1.19-1.76]), obesity (body mass index >30 kg/m(2)) (OR: 1.26 [1.09-1.45]), diabetes >3 years (nested case-control OR: 1.57 [1.13-2.18], case-control OR: 1.80 [1.40-2.32]), family history of pancreatic cancer (OR: 1.60 [1.20-2.12]), non-O ABO genotype (AO vs. OO genotype) (OR: 1.23 [1.10-1.37]) to (BB vs. OO genotype) (OR 1.58 [0.97-2.59]), rs3790844(chr1q32.1) (OR: 1.29 [1.19-1.40]), rs401681(5p15.33) (OR: 1.18 [1.10-1.26]) and rs9543325(13q22.1) (OR: 1.27 [1.18-1.36]). The areas under the ROC curve for risk models including only non-genetic factors, only genetic factors, and both non-genetic and genetic factors were 58%, 57% and 61%, respectively. We estimate that fewer than 3/1,000 U.S. non-Hispanic whites have more than a 5% predicted lifetime absolute risk.CONCLUSION: Although absolute risk modeling using established risk factors may help to identify a group of individuals at higher than average risk of pancreatic cancer, the immediate clinical utility of our model is limited. However, a risk model can increase awareness of the various risk factors for pancreatic cancer, including modifiable behaviors.
  •  
5.
  • Klein, Alison P., et al. (author)
  • Genome-wide meta-analysis identifies five new susceptibility loci for pancreatic cancer
  • 2018
  • In: Nature Communications. - : Nature Publishing Group. - 2041-1723. ; 9
  • Journal article (peer-reviewed)abstract
    • In 2020, 146,063 deaths due to pancreatic cancer are estimated to occur in Europe and the United States combined. To identify common susceptibility alleles, we performed the largest pancreatic cancer GWAS to date, including 9040 patients and 12,496 controls of European ancestry from the Pancreatic Cancer Cohort Consortium (PanScan) and the Pancreatic Cancer Case-Control Consortium (PanC4). Here, we find significant evidence of a novel association at rs78417682 (7p12/TNS3, P = 4.35 x 10(-8)). Replication of 10 promising signals in up to 2737 patients and 4752 controls from the PANcreatic Disease ReseArch (PAN-DoRA) consortium yields new genome-wide significant loci: rs13303010 at 1p36.33 (NOC2L, P = 8.36 x 10(-14)), rs2941471 at 8q21.11 (HNF4G, P = 6.60 x 10(-10)), rs4795218 at 17q12 (HNF1B, P = 1.32 x 10(-8)), and rs1517037 at 18q21.32 (GRP, P = 3.28 x 10(-8)). rs78417682 is not statistically significantly associated with pancreatic cancer in PANDoRA. Expression quantitative trait locus analysis in three independent pancreatic data sets provides molecular support of NOC2L as a pancreatic cancer susceptibility gene.
  •  
6.
  • Lindström, Sara, et al. (author)
  • Genome-wide analyses characterize shared heritability among cancers and identify novel cancer susceptibility regions
  • 2023
  • In: Journal of the National Cancer Institute. - : Oxford University Press. - 0027-8874 .- 1460-2105. ; 115:6, s. 712-732
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: The shared inherited genetic contribution to risk of different cancers is not fully known. In this study, we leverage results from 12 cancer genome-wide association studies (GWAS) to quantify pairwise genome-wide genetic correlations across cancers and identify novel cancer susceptibility loci.METHODS: We collected GWAS summary statistics for 12 solid cancers based on 376 759 participants with cancer and 532 864 participants without cancer of European ancestry. The included cancer types were breast, colorectal, endometrial, esophageal, glioma, head and neck, lung, melanoma, ovarian, pancreatic, prostate, and renal cancers. We conducted cross-cancer GWAS and transcriptome-wide association studies to discover novel cancer susceptibility loci. Finally, we assessed the extent of variant-specific pleiotropy among cancers at known and newly identified cancer susceptibility loci.RESULTS: We observed widespread but modest genome-wide genetic correlations across cancers. In cross-cancer GWAS and transcriptome-wide association studies, we identified 15 novel cancer susceptibility loci. Additionally, we identified multiple variants at 77 distinct loci with strong evidence of being associated with at least 2 cancer types by testing for pleiotropy at known cancer susceptibility loci.CONCLUSIONS: Overall, these results suggest that some genetic risk variants are shared among cancers, though much of cancer heritability is cancer-specific and thus tissue-specific. The increase in statistical power associated with larger sample sizes in cross-disease analysis allows for the identification of novel susceptibility regions. Future studies incorporating data on multiple cancer types are likely to identify additional regions associated with the risk of multiple cancer types.
  •  
7.
  • Machiela, Mitchell J., et al. (author)
  • Genetically predicted longer telomere length is associated with increased risk of B-cell lymphoma subtypes
  • 2016
  • In: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 25:8, s. 1663-1676
  • Journal article (peer-reviewed)abstract
    • Evidence from a small number of studies suggests that longer telomere length measured in peripheral leukocytes is associated with an increased risk of non-Hodgkin lymphoma (NHL). However, these studies may be biased by reverse causation, confounded by unmeasured environmental exposures and might miss time points for which prospective telomere measurement would best reveal a relationship between telomere length and NHL risk. We performed an analysis of genetically inferred telomere length and NHL risk in a study of 10 102 NHL cases of the four most common B-cell histologic types and 9562 controls using a genetic risk score (GRS) comprising nine telomere length-associated single-nucleotide polymorphisms. This approach uses existing genotype data and estimates telomere length by weighing the number of telomere length-associated variant alleles an individual carries with the published change in kb of telomere length. The analysis of the telomere length GRS resulted in an association between longer telomere length and increased NHL risk [four B-cell histologic types combined; odds ratio (OR) = 1.49, 95% CI 1.22-1.82, P-value = 8.5 x 10(-5)]. Subtype-specific analyses indicated that chronic lymphocytic leukemia or small lymphocytic lymphoma (CLL/SLL) was the principal NHL subtype contributing to this association (OR = 2.60, 95% CI 1.93-3.51, P-value = 4.0 x 10(-10)). Significant interactions were observed across strata of sex for CLL/SLL and marginal zone lymphoma subtypes as well as age for the follicular lymphoma subtype. Our results indicate that a genetic background that favors longer telomere length may increase NHL risk, particularly risk of CLL/SLL, and are consistent with earlier studies relating longer telomere length with increased NHL risk.
  •  
8.
  • Petersen, Gloria M, et al. (author)
  • A genome-wide association study identifies pancreatic cancer susceptibility loci on chromosomes 13q22.1, 1q32.1 and 5p15.33
  • 2010
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 42:3, s. 224-228
  • Journal article (peer-reviewed)abstract
    • We conducted a genome-wide association study of pancreatic cancer in 3,851 affected individuals (cases) and 3,934 unaffected controls drawn from 12 prospective cohort studies and 8 case-control studies. Based on a logistic regression model for genotype trend effect that was adjusted for study, age, sex, self-described ancestry and five principal components, we identified eight SNPs that map to three loci on chromosomes 13q22.1, 1q32.1 and 5p15.33. Two correlated SNPs, rs9543325 (P = 3.27 x 10(-11), per-allele odds ratio (OR) 1.26, 95% CI 1.18-1.35) and rs9564966 (P = 5.86 x 10(-8), per-allele OR 1.21, 95% CI 1.13-1.30), map to a nongenic region on chromosome 13q22.1. Five SNPs on 1q32.1 map to NR5A2, and the strongest signal was at rs3790844 (P = 2.45 x 10(-10), per-allele OR 0.77, 95% CI 0.71-0.84). A single SNP, rs401681 (P = 3.66 x 10(-7), per-allele OR 1.19, 95% CI 1.11-1.27), maps to the CLPTM1L-TERT locus on 5p15.33, which is associated with multiple cancers. Our study has identified common susceptibility loci for pancreatic cancer that warrant follow-up studies.
  •  
9.
  • Sampson, Joshua N., et al. (author)
  • Analysis of Heritability and Shared Heritability Based on Genome-Wide Association Studies for 13 Cancer Types
  • 2015
  • In: Journal of the National Cancer Institute. - : Oxford University Press (OUP). - 0027-8874 .- 1460-2105. ; 107:12
  • Journal article (peer-reviewed)abstract
    • Background: Studies of related individuals have consistently demonstrated notable familial aggregation of cancer. We aim to estimate the heritability and genetic correlation attributable to the additive effects of common single-nucleotide polymorphisms (SNPs) for cancer at 13 anatomical sites. Methods: Between 2007 and 2014, the US National Cancer Institute has generated data from genome-wide association studies (GWAS) for 49 492 cancer case patients and 34 131 control patients. We apply novel mixed model methodology (GCTA) to this GWAS data to estimate the heritability of individual cancers, as well as the proportion of heritability attributable to cigarette smoking in smoking-related cancers, and the genetic correlation between pairs of cancers. Results: GWAS heritability was statistically significant at nearly all sites, with the estimates of array-based heritability, h(l)(2), on the liability threshold (LT) scale ranging from 0.05 to 0.38. Estimating the combined heritability of multiple smoking characteristics, we calculate that at least 24% (95% confidence interval [CI] = 14% to 37%) and 7% (95% CI = 4% to 11%) of the heritability for lung and bladder cancer, respectively, can be attributed to genetic determinants of smoking. Most pairs of cancers studied did not show evidence of strong genetic correlation. We found only four pairs of cancers with marginally statistically significant correlations, specifically kidney and testes (rho = 0.73, SE = 0.28), diffuse large B-cell lymphoma (DLBCL) and pediatric osteosarcoma (rho = 0.53, SE = 0.21), DLBCL and chronic lymphocytic leukemia (CLL) (rho = 0.51, SE = 0.18), and bladder and lung (rho = 0.35, SE = 0.14). Correlation analysis also indicates that the genetic architecture of lung cancer differs between a smoking population of European ancestry and a nonsmoking Asian population, allowing for the possibility that the genetic etiology for the same disease can vary by population and environmental exposures. Conclusion: Our results provide important insights into the genetic architecture of cancers and suggest new avenues for investigation.
  •  
10.
  • Walsh, Naomi, et al. (author)
  • Agnostic Pathway/Gene Set Analysis of Genome-Wide Association Data Identifies Associations for Pancreatic Cancer
  • 2019
  • In: Journal of the National Cancer Institute. - : Oxford University Press. - 0027-8874 .- 1460-2105. ; 111:6
  • Journal article (peer-reviewed)abstract
    • Background: Genome-wide association studies (GWAS) identify associations of individual single-nucleotide polymorphisms (SNPs) with cancer risk but usually only explain a fraction of the inherited variability. Pathway analysis of genetic variants is a powerful tool to identify networks of susceptibility genes.Methods: We conducted a large agnostic pathway-based meta-analysis of GWAS data using the summary-based adaptive rank truncated product method to identify gene sets and pathways associated with pancreatic ductal adenocarcinoma (PDAC) in 9040 cases and 12 496 controls. We performed expression quantitative trait loci (eQTL) analysis and functional annotation of the top SNPs in genes contributing to the top associated pathways and gene sets. All statistical tests were two-sided.Results: We identified 14 pathways and gene sets associated with PDAC at a false discovery rate of less than 0.05. After Bonferroni correction (P ≤ 1.3 × 10-5), the strongest associations were detected in five pathways and gene sets, including maturity-onset diabetes of the young, regulation of beta-cell development, role of epidermal growth factor (EGF) receptor transactivation by G protein-coupled receptors in cardiac hypertrophy pathways, and the Nikolsky breast cancer chr17q11-q21 amplicon and Pujana ATM Pearson correlation coefficient (PCC) network gene sets. We identified and validated rs876493 and three correlating SNPs (PGAP3) and rs3124737 (CASP7) from the Pujana ATM PCC gene set as eQTLs in two normal derived pancreas tissue datasets.Conclusion: Our agnostic pathway and gene set analysis integrated with functional annotation and eQTL analysis provides insight into genes and pathways that may be biologically relevant for risk of PDAC, including those not previously identified.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 58

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view