SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Chapron Guillaume) ;pers:(Månsson Johan)"

Search: WFRF:(Chapron Guillaume) > Månsson Johan

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Chapron, Guillaume, et al. (author)
  • Estimating wolf (Canis lupus) population size from number of packs and an individual based model
  • 2016
  • In: Ecological Modelling. - : Elsevier BV. - 0304-3800 .- 1872-7026. ; 339, s. 33-44
  • Journal article (peer-reviewed)abstract
    • Estimating wildlife population-size is fundamental for wildlife management and conservation. However, making monitoring of population size less resource demanding while still keeping a high monitoring accuracy and precision remains a recurrent challenge. One proposed alternative to count individuals is to instead focus on counting a segment of the population that is easier to monitor but at the same time well informative on total population size. We show how total population size can be estimated from group counts by using an individual-based population model in a social living species. We developed a wolf (Canis lupus) specific Individual Based Model and used Approximate Bayesian Computation (ABC) to fit this population model to the time series of annual number of packs, reproductions and pairs obtained from Scandinavian monitoring data. Model informative priors were obtained with data from collared individuals by the Scandinavian wolf research project. The fitted model was then used to estimate a conversion factor from number of packs to total number of individuals and to number of reproductions. There was a good fit between the retained simulations by ABC and the observed Scandinavian wolf population trajectory. The fitted simulations returned a conversion factor of 8.0 (95% CI = 6.62-10.07) from number of packs to total population size and of 1.0 (95% CI = 0.93-1.12) to number of reproductions in December. A sensitivity analysis revealed that the conversion factor from packs to total population size was positively correlated with pup survival and litter size and negatively correlated with subadult, vagrant and adult survivals. Using an individual based model allowed us to model the full complexity of demographic traits of a social-living species such as the wolf. The flexibility of the model also meant that the conversion factor could be estimated for any month during the year. Our approach to estimate total population size from counts of groups requires having a population model where both individuals and groups are explicitly described and can be applied to other wolf populations and group-living species where counting all individuals over a large area is unfeasible.
  •  
2.
  • Chapron, Guillaume, et al. (author)
  • Habitat segregation between brown bears and gray wolves in a human-dominated landscape
  • 2018
  • In: Ecology and Evolution. - : Wiley. - 2045-7758. ; 8, s. 11450-11466
  • Journal article (peer-reviewed)abstract
    • Identifying how sympatric species belonging to the same guild coexist is a major question of community ecology and conservation. Habitat segregation between two species might help reduce the effects of interspecific competition and apex predators are of special interest in this context, because their interactions can have consequences for lower trophic levels. However, habitat segregation between sympatric large carnivores has seldom been studied. Based on monitoring of 53 brown bears (Ursus arctos) and seven sympatric adult gray wolves (Canis lupus) equipped with GPS collars in Sweden, we analyzed the degree of interspecific segregation in habitat selection within their home ranges in both late winter and spring, when their diets overlap the most. We used the K-select method, a multivariate approach that relies on the concept of ecological niche, and randomization methods to quantify habitat segregation between bears and wolves. Habitat segregation between bears and wolves was greater than expected by chance. Wolves tended to select for moose occurrence, young forests, and rugged terrain more than bears, which likely reflects the different requirements of an omnivore (bear) and an obligate carnivore (wolf). However, both species generally avoided human-related habitats during daytime. Disentangling the mechanisms that can drive interspecific interactions at different spatial scales is essential for understanding how sympatric large carnivores occur and coexist in human-dominated landscapes, and how coexistence may affect lower trophic levels. The individual variation in habitat selection detected in our study may be a relevant mechanism to overcome intraguild competition and facilitate coexistence.
  •  
3.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view