SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Chen Constance) ;pers:(Chen Constance)"

Search: WFRF:(Chen Constance) > Chen Constance

  • Result 1-10 of 12
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Sampson, Joshua N., et al. (author)
  • Analysis of Heritability and Shared Heritability Based on Genome-Wide Association Studies for 13 Cancer Types
  • 2015
  • In: Journal of the National Cancer Institute. - : Oxford University Press (OUP). - 0027-8874 .- 1460-2105. ; 107:12
  • Journal article (peer-reviewed)abstract
    • Background: Studies of related individuals have consistently demonstrated notable familial aggregation of cancer. We aim to estimate the heritability and genetic correlation attributable to the additive effects of common single-nucleotide polymorphisms (SNPs) for cancer at 13 anatomical sites. Methods: Between 2007 and 2014, the US National Cancer Institute has generated data from genome-wide association studies (GWAS) for 49 492 cancer case patients and 34 131 control patients. We apply novel mixed model methodology (GCTA) to this GWAS data to estimate the heritability of individual cancers, as well as the proportion of heritability attributable to cigarette smoking in smoking-related cancers, and the genetic correlation between pairs of cancers. Results: GWAS heritability was statistically significant at nearly all sites, with the estimates of array-based heritability, h(l)(2), on the liability threshold (LT) scale ranging from 0.05 to 0.38. Estimating the combined heritability of multiple smoking characteristics, we calculate that at least 24% (95% confidence interval [CI] = 14% to 37%) and 7% (95% CI = 4% to 11%) of the heritability for lung and bladder cancer, respectively, can be attributed to genetic determinants of smoking. Most pairs of cancers studied did not show evidence of strong genetic correlation. We found only four pairs of cancers with marginally statistically significant correlations, specifically kidney and testes (rho = 0.73, SE = 0.28), diffuse large B-cell lymphoma (DLBCL) and pediatric osteosarcoma (rho = 0.53, SE = 0.21), DLBCL and chronic lymphocytic leukemia (CLL) (rho = 0.51, SE = 0.18), and bladder and lung (rho = 0.35, SE = 0.14). Correlation analysis also indicates that the genetic architecture of lung cancer differs between a smoking population of European ancestry and a nonsmoking Asian population, allowing for the possibility that the genetic etiology for the same disease can vary by population and environmental exposures. Conclusion: Our results provide important insights into the genetic architecture of cancers and suggest new avenues for investigation.
  •  
2.
  • Wang, Zhaoming, et al. (author)
  • Imputation and subset-based association analysis across different cancer types identifies multiple independent risk loci in the TERT-CLPTM1L region on chromosome 5p15.33
  • 2014
  • In: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 23:24, s. 6616-6633
  • Journal article (peer-reviewed)abstract
    • Genome-wide association studies (GWAS) have mapped risk alleles for at least 10 distinct cancers to a small region of 63 000 bp on chromosome 5p15.33. This region harbors the TERT and CLPTM1L genes; the former encodes the catalytic subunit of telomerase reverse transcriptase and the latter may play a role in apoptosis. To investigate further the genetic architecture of common susceptibility alleles in this region, we conducted an agnostic subset-based meta-analysis (association analysis based on subsets) across six distinct cancers in 34 248 cases and 45 036 controls. Based on sequential conditional analysis, we identified as many as six independent risk loci marked by common single-nucleotide polymorphisms: five in the TERT gene (Region 1: rs7726159, P = 2.10 × 10(-39); Region 3: rs2853677, P = 3.30 × 10(-36) and PConditional = 2.36 × 10(-8); Region 4: rs2736098, P = 3.87 × 10(-12) and PConditional = 5.19 × 10(-6), Region 5: rs13172201, P = 0.041 and PConditional = 2.04 × 10(-6); and Region 6: rs10069690, P = 7.49 × 10(-15) and PConditional = 5.35 × 10(-7)) and one in the neighboring CLPTM1L gene (Region 2: rs451360; P = 1.90 × 10(-18) and PConditional = 7.06 × 10(-16)). Between three and five cancers mapped to each independent locus with both risk-enhancing and protective effects. Allele-specific effects on DNA methylation were seen for a subset of risk loci, indicating that methylation and subsequent effects on gene expression may contribute to the biology of risk variants on 5p15.33. Our results provide strong support for extensive pleiotropy across this region of 5p15.33, to an extent not previously observed in other cancer susceptibility loci.
  •  
3.
  • Machiela, Mitchell J., et al. (author)
  • Characterization of Large Structural Genetic Mosaicism in Human Autosomes
  • 2015
  • In: American Journal of Human Genetics. - : Elsevier BV. - 0002-9297 .- 1537-6605. ; 96:3, s. 487-497
  • Journal article (peer-reviewed)abstract
    • Analyses of genome-wide association study (GWAS) data have revealed that detectable genetic mosaicism involving large (>2 Mb) structural autosomal alterations occurs in a fraction of individuals. We present results for a set of 24,849 genotyped individuals (total GWAS set II [TGSII]) in whom 341 large autosomal abnormalities were observed in 168 (0.68%) individuals. Merging data from the new TGSII set with data from two prior reports (the Gene-Environment Association Studies and the total GWAS set I) generated a large dataset of 127,179 individuals; we then conducted a meta-analysis to investigate the patterns of detectable autosomal mosaicism (n = 1,315 events in 925 [0.73%] individuals). Restricting to events >2 Mb in size, we observed an increase in event frequency as event size decreased. The combined results underscore that the rate of detectable mosaicism increases with age (p value = 5.5 x 3 10(-31)) and is higher in men (p value = 0.002) but lower in participants of African ancestry (p value = 0.003). In a subset of 47 individuals from whom serial samples were collected up to 6 years apart, complex changes were noted over time and showed an overall increase in the proportion of mosaic cells as age increased. Our large combined sample allowed for a unique ability to characterize detectable genetic mosaicism involving large structural events and strengthens the emerging evidence of non-random erosion of the genome in the aging population.
  •  
4.
  • Machiela, Mitchell J, et al. (author)
  • Female chromosome X mosaicism is age-related and preferentially affects the inactivated X chromosome
  • 2016
  • In: Nature Communications. - : Nature Publishing Group. - 2041-1723. ; 7
  • Journal article (peer-reviewed)abstract
    • To investigate large structural clonal mosaicism of chromosome X, we analysed the SNP microarray intensity data of 38,303 women from cancer genome-wide association studies (20,878 cases and 17,425 controls) and detected 124 mosaic X events >2 Mb in 97 (0.25%) women. Here we show rates for X-chromosome mosaicism are four times higher than mean autosomal rates; X mosaic events more often include the entire chromosome and participants with X events more likely harbour autosomal mosaic events. X mosaicism frequency increases with age (0.11% in 50-year olds; 0.45% in 75-year olds), as reported for Y and autosomes. Methylation array analyses of 33 women with X mosaicism indicate events preferentially involve the inactive X chromosome. Our results provide further evidence that the sex chromosomes undergo mosaic events more frequently than autosomes, which could have implications for understanding the underlying mechanisms of mosaic events and their possible contribution to risk for chronic diseases.
  •  
5.
  • Joshi, Peter K, et al. (author)
  • Directional dominance on stature and cognition in diverse human populations
  • 2015
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 523:7561, s. 459-462
  • Journal article (peer-reviewed)abstract
    • Homozygosity has long been associated with rare, often devastating, Mendelian disorders, and Darwin was one of the first to recognize that inbreeding reduces evolutionary fitness. However, the effect of the more distant parental relatedness that is common in modern human populations is less well understood. Genomic data now allow us to investigate the effects of homozygosity on traits of public health importance by observing contiguous homozygous segments (runs of homozygosity), which are inferred to be homozygous along their complete length. Given the low levels of genome-wide homozygosity prevalent in most human populations, information is required on very large numbers of people to provide sufficient power. Here we use runs of homozygosity to study 16 health-related quantitative traits in 354,224 individuals from 102 cohorts, and find statistically significant associations between summed runs of homozygosity and four complex traits: height, forced expiratory lung volume in one second, general cognitive ability and educational attainment (P < 1 × 10(-300), 2.1 × 10(-6), 2.5 × 10(-10) and 1.8 × 10(-10), respectively). In each case, increased homozygosity was associated with decreased trait value, equivalent to the offspring of first cousins being 1.2 cm shorter and having 10 months' less education. Similar effect sizes were found across four continental groups and populations with different degrees of genome-wide homozygosity, providing evidence that homozygosity, rather than confounding, directly contributes to phenotypic variance. Contrary to earlier reports in substantially smaller samples, no evidence was seen of an influence of genome-wide homozygosity on blood pressure and low density lipoprotein cholesterol, or ten other cardio-metabolic traits. Since directional dominance is predicted for traits under directional evolutionary selection, this study provides evidence that increased stature and cognitive function have been positively selected in human evolution, whereas many important risk factors for late-onset complex diseases may not have been.
  •  
6.
  • Figueroa, Jonine D., et al. (author)
  • Genome-wide association study identifies multiple loci associated with bladder cancer risk
  • 2014
  • In: Human Molecular Genetics. - : Oxford University Press. - 0964-6906 .- 1460-2083. ; 23:5, s. 1387-1398
  • Journal article (peer-reviewed)abstract
    • andidate gene and genome-wide association studies (GWAS) have identified 11 independent susceptibility loci associated with bladder cancer risk. To discover additional risk variants, we conducted a new GWAS of 2422 bladder cancer cases and 5751 controls, followed by a meta-analysis with two independently published bladder cancer GWAS, resulting in a combined analysis of 6911 cases and 11 814 controls of European descent. TaqMan genotyping of 13 promising single nucleotide polymorphisms with P < 1 × 10−5 was pursued in a follow-up set of 801 cases and 1307 controls. Two new loci achieved genome-wide statistical significance: rs10936599 on 3q26.2 (P = 4.53 × 10−9) and rs907611 on 11p15.5 (P = 4.11 × 10−8). Two notable loci were also identified that approached genome-wide statistical significance: rs6104690 on 20p12.2 (P = 7.13 × 10−7) and rs4510656 on 6p22.3 (P = 6.98 × 10−7); these require further studies for confirmation. In conclusion, our study has identified new susceptibility alleles for bladder cancer risk that require fine-mapping and laboratory investigation, which could further understanding into the biological underpinnings of bladder carcinogenesis.
  •  
7.
  • Figueroa, Jonine D., et al. (author)
  • Genome-wide interaction study of smoking and bladder cancer risk
  • 2014
  • In: Carcinogenesis. - : Oxford University Press. - 0143-3334 .- 1460-2180. ; 35:8, s. 1737-1744
  • Journal article (peer-reviewed)abstract
    • Bladder cancer is a complex disease with known environmental and genetic risk factors. We performed a genome-wide interaction study (GWAS) of smoking and bladder cancer risk based on primary scan data from 3002 cases and 4411 controls from the National Cancer Institute Bladder Cancer GWAS. Alternative methods were used to evaluate both additive and multiplicative interactions between individual single nucleotide polymorphisms (SNPs) and smoking exposure. SNPs with interaction P values < 5 x 10(-5) were evaluated further in an independent dataset of 2422 bladder cancer cases and 5751 controls. We identified 10 SNPs that showed association in a consistent manner with the initial dataset and in the combined dataset, providing evidence of interaction with tobacco use. Further, two of these novel SNPs showed strong evidence of association with bladder cancer in tobacco use subgroups that approached genome-wide significance. Specifically, rs1711973 (FOXF2) on 6p25.3 was a susceptibility SNP for never smokers [combined odds ratio (OR) = 1.34, 95% confidence interval (CI) = 1.20-1.50, P value = 5.18 x 10(-7)]; and rs12216499 (RSPH3-TAGAP-EZR) on 6q25.3 was a susceptibility SNP for ever smokers (combined OR = 0.75, 95% CI = 0.67-0.84, P value = 6.35 x 10-7). In our analysis of smoking and bladder cancer, the tests for multiplicative interaction seemed to more commonly identify susceptibility loci with associations in never smokers, whereas the additive interaction analysis identified more loci with associations among smokers-including the known smoking and NAT2 acetylation interaction. Our findings provide additional evidence of gene-environment interactions for tobacco and bladder cancer.
  •  
8.
  • Fu, Yi-Ping, et al. (author)
  • The 19q12 Bladder Cancer GWAS Signal : Association with Cyclin E Function and Aggressive Disease
  • 2014
  • In: Cancer Research. - 0008-5472 .- 1538-7445. ; 74:20, s. 5808-5818
  • Journal article (peer-reviewed)abstract
    • A genome-wide association study (GWAS) of bladder cancer identified a genetic marker rs8102137 within the 19q12 region as a novel susceptibility variant. This marker is located upstream of the CCNE1 gene, which encodes cyclin E, a cell-cycle protein. We performed genetic fine-mapping analysis of the CCNE1 region using data from two bladder cancer GWAS (5,942 cases and 10,857 controls). We found that the original GWAS marker rs8102137 represents a group of 47 linked SNPs (with r(2) >= 0.7) associated with increased bladder cancer risk. From this group, we selected a functional promoter variant rs7257330, which showed strong allele-specific binding of nuclear proteins in several cell lines. In both GWASs, rs7257330 was associated only with aggressive bladder cancer, with a combined per-allele OR = 1.18 [95% confidence interval (CI), 1.09-1.27, P = 4.67 x 10(-5)] versus OR = 1.01 (95% CI, 0.93-1.10, P = 0.79) for nonaggressive disease, with P = 0.0015 for case-only analysis. Cyclin E protein expression analyzed in 265 bladder tumors was increased in aggressive tumors (P = 0.013) and, independently, with each rs7257330-A risk allele (P-trend = 0.024). Overexpression of recombinant cyclin E in cell lines caused significant acceleration of cell cycle. In conclusion, we defined the 19q12 signal as the first GWAS signal specific for aggressive bladder cancer. Molecular mechanisms of this genetic association may be related to cyclin E overexpression and alteration of cell cycle in carriers of CCNE1 risk variants. In combination with established bladder cancer risk factors and other somatic and germline genetic markers, the CCNE1 variants could be useful for inclusion into bladder cancer risk prediction models.
  •  
9.
  • Hendrickson, Sara J., et al. (author)
  • Plasma Carotenoid- and Retinol-Weighted Multi-SNP Scores and Risk of Breast Cancer in the National Cancer Institute Breast and Prostate Cancer Cohort Consortium
  • 2013
  • In: Cancer Epidemiology, Biomarkers and Prevention. - Philadelphia, PA, USA : American Association for Cancer Research. - 1055-9965 .- 1538-7755. ; 22:5, s. 927-936
  • Journal article (peer-reviewed)abstract
    • Background: Dietary and circulating carotenoids have been inversely associated with breast cancer risk, but observed associations may be due to confounding. Single-nucleotide polymorphisms (SNPs) in beta-carotene 15,15'-monooxygenase 1 (BCMO1), a gene encoding the enzyme involved in the first step of synthesizing vitamin A from dietary carotenoids, have been associated with circulating carotenoid concentrations and may serve as unconfounded surrogates for those biomarkers. We determined associations between variants in BCMO1 and breast cancer risk in a large cohort consortium. Methods: We used unconditional logistic regression to test four SNPs in BCMO1 for associations with breast cancer risk in 9,226 cases and 10,420 controls from the National Cancer Institute Breast and Prostate Cancer Cohort Consortium (BPC3). We also tested weighted multi-SNP scores composed of the two SNPs with strong, confirmed associations with circulating carotenoid concentrations. Results: Neither the individual SNPs nor the weighted multi-SNP scores were associated with breast cancer risk [OR (95% confidence interval) comparing extreme quintiles of weighted multi-SNP scores = 1.04 (0.94-1.16) for beta-carotene, 1.08 (0.98-1.20) for alpha-carotene, 1.04 (0.94-1.16) for beta-cryptoxanthin, 0.95 (0.87-1.05) for lutein/zeaxanthin, and 0.92 (0.83-1.02) for retinol]. Furthermore, no associations were observed when stratifying by estrogen receptor status, but power was limited. Conclusions: Our results do not support an association between SNPs associated with circulating carotenoid concentrations and breast cancer risk. Impact: Future studies will need additional genetic surrogates and/or sample sizes at least three times larger to contribute evidence of a causal link between carotenoids and breast cancer. (C) 2013 AACR.
  •  
10.
  • Lango Allen, Hana, et al. (author)
  • Hundreds of variants clustered in genomic loci and biological pathways affect human height.
  • 2010
  • In: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 467:7317, s. 832-8
  • Journal article (peer-reviewed)abstract
    • Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits, but these typically explain small fractions of phenotypic variation, raising questions about the use of further studies. Here, using 183,727 individuals, we show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait. The large number of loci reveals patterns with important implications for genetic studies of common human diseases and traits. First, the 180 loci are not random, but instead are enriched for genes that are connected in biological pathways (P = 0.016) and that underlie skeletal growth defects (P < 0.001). Second, the likely causal gene is often located near the most strongly associated variant: in 13 of 21 loci containing a known skeletal growth gene, that gene was closest to the associated variant. Third, at least 19 loci have multiple independently associated variants, suggesting that allelic heterogeneity is a frequent feature of polygenic traits, that comprehensive explorations of already-discovered loci should discover additional variants and that an appreciable fraction of associated loci may have been identified. Fourth, associated variants are enriched for likely functional effects on genes, being over-represented among variants that alter amino-acid structure of proteins and expression levels of nearby genes. Our data explain approximately 10% of the phenotypic variation in height, and we estimate that unidentified common variants of similar effect sizes would increase this figure to approximately 16% of phenotypic variation (approximately 20% of heritable variation). Although additional approaches are needed to dissect the genetic architecture of polygenic human traits fully, our findings indicate that GWA studies can identify large numbers of loci that implicate biologically relevant genes and pathways.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 12
Type of publication
journal article (12)
Type of content
peer-reviewed (12)
Author/Editor
Kraft, Peter (12)
Chanock, Stephen J (10)
Hunter, David J (10)
Riboli, Elio (9)
Wang, Zhaoming (9)
Garcia-Closas, Monts ... (8)
show more...
Chatterjee, Nilanjan (8)
Krogh, Vittorio (7)
Haiman, Christopher ... (7)
Berndt, Sonja I (7)
Gapstur, Susan M (7)
Bueno-de-Mesquita, H ... (7)
Hutchinson, Amy (7)
Kooperberg, Charles (7)
Rothman, Nathaniel (7)
Malats, Nuria (7)
De Vivo, Immaculata (7)
Albanes, Demetrius (6)
Severi, Gianluca (6)
Vineis, Paolo (6)
Trichopoulos, Dimitr ... (6)
Tjonneland, Anne (6)
Kolonel, Laurence N (6)
Yeager, Meredith (6)
Black, Amanda (6)
Liu, Jianjun (6)
Prokunina-Olsson, Lu ... (6)
Chung, Charles C. (6)
Siddiq, Afshan (6)
Wu, Xifeng (6)
Van Den Berg, David (6)
Lindstrom, Sara (6)
Chang-Claude, Jenny (5)
Khaw, Kay-Tee (5)
Weiderpass, Elisabet ... (5)
Stevens, Victoria L (5)
Cancel-Tassin, Geral ... (5)
Kogevinas, Manolis (5)
Gago Dominguez, Manu ... (5)
Diver, W Ryan (5)
Gaziano, J Michael (5)
Le Marchand, Loïc (5)
Weinstein, Stephanie ... (5)
Ljungberg, Börje (5)
Jacobs, Eric J (5)
Jacobs, Kevin B (5)
Cussenot, Olivier (5)
Caporaso, Neil E. (5)
Pike, Malcolm C (5)
Yuan, Jian-Min (5)
show less...
University
Umeå University (9)
Karolinska Institutet (9)
Uppsala University (5)
University of Gothenburg (1)
Lund University (1)
Stockholm School of Economics (1)
Language
English (12)
Research subject (UKÄ/SCB)
Medical and Health Sciences (9)
Natural sciences (2)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view