SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Chen Deliang) ;pers:(Kim B. M.)"

Search: WFRF:(Chen Deliang) > Kim B. M.

  • Result 1-5 of 5
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Chen, Deliang, 1961, et al. (author)
  • Recent Recovery of the Siberian High Intensity
  • 2011
  • In: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 116
  • Journal article (peer-reviewed)abstract
    • This study highlights the fast recovery of the wintertime Siberian High intensity (SHI) over the last two decades. The SHI showed a marked weakening trend from the 1970s to 1980s, leading to unprecedented low SHI in the early 1990s according to most observational data sets. This salient declining SHI trend, however, was sharply replaced by a fast recovery over the last two decades. Since the declining SHI trend has been considered as one of the plausible consequences of climate warming, the recent SHI recovery seemingly contradicts the continuous progression of climate warming in the Northern Hemisphere. We suggest that alleviated surface warming and decreased atmospheric stability in the central Siberia region, associated with an increase in Eurasian snow cover, in the recent two decades contributed to this rather unexpected SHI recovery. The prominent SHI change, however, is not reproduced by general circulation model (GCM) simulations used in the IPCC AR4. The GCMs indicate the steady weakening of the SHI for the entire 21st century, which is found to be associated with a decreasing Eurasian snow cover in the simulations. An improvement in predicting the future climate change in regional scale is desirable.
  •  
2.
  • Jeong, Jee-Hoon, 1976, et al. (author)
  • Greening in the circumpolar high-latitude may amplify warming in the growing season
  • 2012
  • In: Climate Dynamics. - : Springer Science and Business Media LLC. - 0930-7575 .- 1432-0894. ; 38:7-8, s. 1421-1431
  • Journal article (peer-reviewed)abstract
    • We present a study that suggests greening in the circumpolar high-latitude regions amplifies surface warming in the growing season (May–September) under enhanced greenhouse conditions. The investigation used a series of climate simulations with the Community Atmospheric Model version 3—which incorporates a coupled, dynamic global vegetation model—with and without vegetation feedback, under both present and doubled CO2 concentrations. Results indicate that climate warming and associated changes promote circumpolar greening with northward expansion and enhanced greenness of both the Arctic tundra and boreal forest regions. This leads to additional surface warming in the high-latitudes in the growing season, primarily through more absorption of incoming solar radiation. The resulting surface and tropospheric warming in the high-latitude and Arctic regions weakens prevailing tropospheric westerlies over 45–70N, leading to the formation of anticyclonic pressure anomalies in the Arctic regions. These pressure anomalies resemble the anomalous circulation pattern during the negative phase of winter Arctic Oscillation. It is suggested that these circulation anomalies reinforce the high-latitude and Arctic warming in the growing season.
  •  
3.
  • Jeong, J. H., et al. (author)
  • Impacts of Snow Initialization on Subseasonal Forecasts of Surface Air Temperature for the Cold Season
  • 2013
  • In: Journal of Climate. - : American Meteorological Society. - 0894-8755 .- 1520-0442. ; 26:6, s. 1956-1972
  • Journal article (peer-reviewed)abstract
    • The present study examines the impacts of snow initialization on surface air temperature by a number of ensemble seasonal predictability experiments using the NCAR Community Atmosphere Model version 3 (CAM3) AGCM with and without snow initialization. The study attempts to isolate snow signals on surface air temperature. In this preliminary study, any effects of variations in sea ice extent are ignored and do not explicitly identify possible impacts on atmospheric circulation. The Canadian Meteorological Center (CMC) daily snow depth analysis was used in defining initial snow states, where anomaly rescaling was applied in order to account for the systematic bias of the CAM3 snow depth with respect to the CMC analysis. Two suites of seasonal (3 months long) ensemble hindcasts starting at each month in the colder part of the year (September–April) with and without the snow initialization were performed for 12 recent years (1999–2010), and the predictability skill of surface air temperature was estimated. Results show that considerable potential predictability increases up to 2 months ahead can be attained using snow initialization. Relatively large increases are found over East Asia, western Russia, and western Canada in the later part of this period. It is suggested that the predictability increases are sensitive to the strength of snow–albedo feedback determined by given local climate conditions; large gains tend to exist over the regions of strong snow–albedo feedback. Implications of these results for seasonal predictability over the extratropical Northern Hemisphere and future direction for this research are discussed.
  •  
4.
  •  
5.
  • Park, C. E., et al. (author)
  • Keeping global warming within 1.5 degrees C constrains emergence of aridification
  • 2018
  • In: Nature Climate Change. - : Springer Science and Business Media LLC. - 1758-678X .- 1758-6798. ; 8:1
  • Journal article (peer-reviewed)abstract
    • Aridity-the ratio of atmospheric water supply (precipitation; P) to demand (potential evapotranspiration; PET)-is projected to decrease (that is, areas will become drier) as a consequence of anthropogenic climate change, exacerbating land degradation and desertification(1-6). However, the timing of significant aridification relative to natural variability-defined here as the time of emergence for aridification (ToEA)-is unknown, despite its importance in designing and implementing mitigation policies(7-10). Here we estimate ToEA from projections of 27 global climate models (GCMs) under representative concentration pathways (RCPs) RCP4.5 and RCP8.5, and in doing so, identify where emergence occurs before global mean warming reaches 1.5 degrees C and 2 degrees C above the pre-industrial level. On the basis of the ensemble median ToEA for each grid cell, aridification emerges over 32% (RCP4.5) and 24% (RCP8.5) of the total land surface before the ensemble median of global mean temperature change reaches 2 degrees C in each scenario. Moreover, ToEA is avoided in about two-thirds of the above regions if the maximum global warming level is limited to 1.5 degrees C. Early action for accomplishing the 1.5 degrees C temperature goal can therefore markedly reduce the likelihood that large regions will face substantial aridification and related impacts.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-5 of 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view