SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Chen Deliang) ;pers:(Xu Chong Yu)"

Sökning: WFRF:(Chen Deliang) > Xu Chong Yu

  • Resultat 1-10 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Gong, Lebing, et al. (författare)
  • Sensitivity of the Penman–Monteith reference evapotranspiration to key climatic variables in the Changjiang (Yangtze River) basin
  • 2006
  • Ingår i: Journal of Hydrology. - : Elsevier BV. - 0022-1694 .- 1879-2707. ; 329:3-4, s. 620-629
  • Tidskriftsartikel (refereegranskat)abstract
    • Sensitivity analysis is important in understanding the relative importance of climatic variables to the variation of reference evapotranspiration (ETref). In this study, a non-dimensional relative sensitivity coefficient was employed to predict responses of ETref to perturbations of four climatic variables in the Changjiang (Yangtze River) basin. ETref was estimated with the FAO-56 Penman–Monteith equation. A 41-year historical dataset of daily air temperature, wind speed, relative humidity and daily sunshine duration at 150 national meteorological observatory stations was used in the analysis. Results show that the response of ETref can be precisely predicted under perturbation of relative humidity or shortwave radiation by their sensitivity coefficients; the predictive power under perturbations of air temperature and wind speed depended on the magnitude of the perturbation, season and region. The prediction errors were much smaller than the seasonal and regional variation of their sensitivity coefficients. The sensitivity coefficient could also be used to predict the response of ETref to co-perturbation of several variables. The accuracy of the prediction increases from the lower to the upper region. Spatial variations of long-term average monthly and yearly sensitivity coefficients were obtained by interpolation of station estimates. In general, relative humidity was the most sensitive variable, followed by shortwave radiation, air temperature and wind speed. The actual rank of the four climatic variables in terms of their sensitivity varied with season and region. The large spatial variability of the sensitivity coefficients of all the climatic variables in the middle and lower regions of the basin was to a large extent determined by the distinct wind-speed patterns in those two regions.
  •  
2.
  •  
3.
  • Chen, Deliang, 1961, et al. (författare)
  • Spatial Interpolation of Daily Precipitation in China : 1951-2005
  • 2010
  • Ingår i: Advances in Atmospheric Sciences. - : Springer Science and Business Media LLC. - 0256-1530 .- 1861-9533. ; 27:6, s. 1221-1232
  • Tidskriftsartikel (refereegranskat)abstract
    • Climate research relies heavily on good quality instrumental data; for modeling efforts gridded data are needed. So far, relatively little effort has been made to create gridded climate data for China. This is especially true for high-resolution daily data. This work, focuses on identifying an accurate method to produce gridded daily precipitation in China based on the observed data at 753 stations for the period 1951-2005. Five interpolation methods, including ordinary nearest neighbor, local polynomial, radial basis function, inverse distance weighting, and ordinary kriging, have been used and compared. Cross-validation shows that the ordinary kriging based on seasonal semi-variograms gives the best performance, closely followed by the inverse distance weighting with a power of 2. Finally the ordinary kriging is chosen to interpolate the station data to a 18 kmx 18 km grid system covering the whole country. Precipitation for each 0.5A degrees x 0.5A degrees latitude-longitude block is then obtained by averaging the values at the grid nodes within the block. Owing to the higher station density in the eastern part of the country, the interpolation errors are much smaller than those in the west (west of 100A degrees E). Excluding 145 stations in the western region, the daily, monthly, and annual relative mean absolute errors of the interpolation for the remaining 608 stations are 74%, 29%, and 16%, respectively. The interpolated daily precipitation has been made available on the internet for the scientific community.
  •  
4.
  • Gao, Ge, 1972, et al. (författare)
  • Trend of estimated actual evapotranspiration over China during 1960-2002
  • 2007
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 112:D11120
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study, the water balance methodology introduced by Thornthwaite and Mather (1955) is modified to estimate monthly actual evapotranspiration for 686 stations over China during 1960–2002. The modification is done by replacing the Thornthwaite potential evapotranspiration estimation with the Penman-Monteith method. Temporal trend and spatial distribution of the estimated annual actual evapotranspiration during the past 43 years are analyzed. The results show that (1) the actual evapotranspiration had a decreasing trend in most areas east of 100°E, and there was an increasing trend in the west and the north parts of northeast China; (2) the spatial distribution of the trend for the actual evapotranspiration is similar to that of the potential evapotranspiration in south China, while the trends are opposite in north China; (3) for most parts of China, the change in precipitation played a key role for the change of estimated actual evapotranspiration, while in southeast China, the change of potential evapotranspiration appeared to be the major factor; and (4) in general, the hydrological cycle was intensified in western China, whereas it was weakened from the Yellow River basin northward.
  •  
5.
  • Shen, Zexi, et al. (författare)
  • Mining Can Exacerbate Global Degradation of Dryland
  • 2021
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 48:21
  • Tidskriftsartikel (refereegranskat)abstract
    • Groundwater storage (GS) is the major water resource for vegetation in drylands. Thus, positive relationships between vegetative growth condition (VGC) and GS are expected in drylands. Since mining-induced dewatering tends to deplete GS surrounding mine sites, VGC should become less favorable due to a shortage of accessible water. However, quantitative analysis repealed the opposite. We found that global annual mineral production in drylands increased by 24%, while GS decreased by 22% but the VGC improved by 37% (2002–2010). And negative relationships between VGC and GS were detected in 84.7% of global dryland mine sites. We concluded that irrigation supported by mining-induced dewatering promoted the vegetation growth surrounding mine sites. However, since the GS is limited, irrigation-supported vegetation growth is unsustainable. This study elucidates the reason behind these abnormal negative relationships and highlights the potential risk of vegetation degradation induced by unsustainable groundwater depletion in global dryland mine sites.
  •  
6.
  • Westerberg, Ida, 1979- (författare)
  • Observational Uncertainties in Water-Resources Modelling in Central America : Methods for Uncertainty Estimation and Model Evaluation
  • 2011
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Knowledge about spatial and temporal variability of hydrological processes is central for sustainable water-resources management, and such knowledge is created from observational data. Hydrologic models are necessary for prediction for time periods and areas lacking data, but are affected by observational uncertainties. Methods for estimating and accounting for such uncertainties in water-resources modelling are of high importance, especially in regions such as Central America. Observational uncertainties were addressed in three ways in this thesis; quality control, quantitative estimation and development of model-evaluation techniques that addressed unquantifiable uncertainties. A first step in any modelling study should be the quality control and concurrent analysis of the representativeness of the observational data. In the characterisation of the precipitation regime in the Choluteca River basin in Honduras, four different quality problems were identified and 22% of the daily data had to be rejected. The monitoring network was found to be insufficient for a comprehensive characterisation of the high spatiotemporal variability of the precipitation regime. Quantitative estimations of data uncertainties can be made when sufficient information is available. Discharge-data uncertainties were estimated with a fuzzy regression for time-variable rating curves and from official rating curves for 35 stations in Honduras. The uncertainties were largest for low flows, as a result of measurement uncertainties and natural variability. A method for calibration with flow-duration curves was developed which enabled calibration to the whole flow range, accounting for discharge uncertainty and calibration with non-overlapping time periods for model input and evaluation data. The method compared favourably to traditional calibration in a test using two models applied in basins with different runoff-generation processes. A post-hoc analysis made it possible to identify potential model-structure errors and periods of disinformative data. Flow-duration curves were regionalised and used for calibration of a Central-American water-balance model. The initial model uncertainty for the ungauged basins was reduced by 70%. Non-representative precipitation data were found to be the main obstacle to comprehensive regional water-resources modelling in Central America. These methods bridged several problems related to observational uncertainties in water-balance modelling. Estimates of prediction uncertainty are an important basis for all types of decisions related to water-resources management.  
  •  
7.
  • Westerberg, Ida, et al. (författare)
  • Precipitation data in a mountainous catchment in Honduras: quality assessment and spatiotemporal characteristics
  • 2010
  • Ingår i: Theoretical and Applied Climatology. - : Springer Nature. - 0177-798X .- 1434-4483. ; 101:3-4, s. 381-396
  • Tidskriftsartikel (refereegranskat)abstract
    • An accurate description of temporal and spatial precipitation variability in Central America is important for local farming, water supply and flood management. Data quality problems and lack of consistent precipitation data impede hydrometeorological analysis in the 7,500 km2 Choluteca River basin in central Honduras, encompassing the capital Tegucigalpa. We used precipitation data from 60 daily and 13 monthly stations in 1913–2006 from five local authorities and NOAA's Global Historical Climatology Network. Quality control routines were developed to tackle the specific data quality problems. The quality-controlled data were characterised spatially and temporally, and compared with regional and larger-scale studies. Two gapfilling methods for daily data and three interpolation methods for monthly and mean annual precipitation were compared. The coefficient-of-correlation-weighting method provided the best results for gap-filling and the universal kriging method for spatial interpolation. In-homogeneity in the time series was the main quality problem, and 22% of the daily precipitation data were too poor to be used. Spatial autocorrelation for monthly precipitation was low during the dry season, and correlation increased markedly when data were temporally aggregated from a daily time scale to 4–5 days. The analysis manifested the high spatial and temporal variability caused by the diverse precipitationgenerating mechanisms and the need for an improved monitoring network.
  •  
8.
  • Wetterhall, Fredrik, et al. (författare)
  • Daily precipitation-downscaling techniques in three Chinese regions
  • 2006
  • Ingår i: Water resources research. - 0043-1397 .- 1944-7973. ; 42:11, s. W11423-
  • Tidskriftsartikel (refereegranskat)abstract
    • Four methods of statistical downscaling of daily precipitation were evaluated on three catchments located in southern, eastern, and central China. The evaluation focused on seasonal variation of statistical properties of precipitation and indices describing the precipitation regime, e. g., maximum length of dry spell and maximum 5-day precipitation, as well as interannual and intra-annual variations of precipitation. The predictors used in this study were mean sea level pressure, geopotential heights at 1000, 850, 700, and 500 hPa, and specific humidity as well as horizontal winds at 850, 700, and 500 hPa levels from the NCEP/NCAR reanalysis with 2.5 degrees x 2.5 degrees resolution for 1961 - 2000. The predictand was daily precipitation from 13 stations. Two analogue methods, one using principal components analysis (PCA) and the other Teweles-Wobus scores (TWS), a multiregression technique with a weather generator producing precipitation (SDSM) and a fuzzy-rule-based weather-pattern-classification method (MOFRBC), were used. Temporal and spatial properties of the predictors were carefully evaluated to derive the optimum setting for each method, and MOFRBC and SDSM were implemented in two modes, with and without humidity as predictor. The results showed that ( 1) precipitation was most successfully downscaled in the southern and eastern catchments located close to the coast, ( 2) winter properties were generally better downscaled, ( 3) MOFRBC and SDSM performed overall better than the analogue methods, ( 4) the modeled interannual variation in precipitation was improved when humidity was added to the predictor set, and ( 5), the annual precipitation cycle was well captured with all methods.
  •  
9.
  •  
10.
  • Wetterhall, Fredrik, et al. (författare)
  • Statistical downscaling of daily precipitation over Sweden using GCM output
  • 2009
  • Ingår i: Journal of Theoretical and Applied Climatology. - : Springer Science and Business Media LLC. - 0177-798X .- 1434-4483. ; 96:1-2, s. 95-103
  • Tidskriftsartikel (refereegranskat)abstract
    • A classification of Swedish weather patterns (SWP) was developed by applying a multi-objective fuzzy-rule-based classification method (MOFRBC) to large-scale-circulation predictors in the context of statistical downscaling of daily precipitation at the station level. The predictor data was mean sea level pressure (MSLP) and geopotential heights at 850 (H850) and 700 hPa (H700) from the NCEP/NCAR reanalysis and from the HadAM3 GCM. The MOFRBC was used to evaluate effects of two future climate scenarios (A2 and B2) on precipitation patterns on two regions in south-central and northern Sweden. The precipitation series were generated with a stochastic, autoregressive model conditioned on SWP. H850 was found to be the optimum predictor for SWP, and SWP could be used instead of local classifications with little information lost. The results in the climate projection indicated an increase in maximum 5-day precipitation and precipitation amount on a wet day for the scenarios A2 and B2 for the period 2070-2100 compared to 1961-1990. The relative increase was largest in the northern region and could be attributed to an increase in the specific humidity rather than to changes in the circulation patterns.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy