SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Chen Wei) ;lar1:(lnu)"

Sökning: WFRF:(Chen Wei) > Linnéuniversitetet

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Akbarzadeh, Saeed, et al. (författare)
  • A Simple Fabrication, Low Noise, Capacitive Tactile Sensor for Use in Inexpensive and Smart Healthcare Systems
  • 2022
  • Ingår i: IEEE Sensors Journal. - : IEEE. - 1530-437X .- 1558-1748. ; 22:9, s. 9069-9077
  • Tidskriftsartikel (refereegranskat)abstract
    • Tactile sensors are among the most important devices used in industrial and biomedical fields. Sensors' profiles are significantly affected by their structures and material used. This article presents a robust, low-cost, low noise, accurate and simple fabrication capacitive tactile sensor as a single taxel fabricated on foam. This highly scalable design provides excellent noise immunity, accuracy, and due to a unique printable elastic conductor, it is flexible and stretchable with more than 200% strain. Furthermore, the taxel is based on the capacitive Wheatstone bridge. As a result, noise immunity and stability in case of temperature fluctuation is accomplished. Additionally, the sensor's innovative, simple fabrication, made of Polyurethane foam and printable elastic conductor, allows the system to adapt and achieve relevant results necessary for the purpose of the sensor's application. Therefore, the proposed sensor has potential applications in industrial and biomedical contexts, such as sleep monitoring, etc.
  •  
2.
  • Algaba, Juan-Carlos, et al. (författare)
  • Broadband Multi-wavelength Properties of M87 during the 2017 Event Horizon Telescope Campaign
  • 2021
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 911:1
  • Forskningsöversikt (refereegranskat)abstract
    • In 2017, the Event Horizon Telescope (EHT) Collaboration succeeded in capturing the first direct image of the center of the M87 galaxy. The asymmetric ring morphology and size are consistent with theoretical expectations for a weakly accreting supermassive black hole of mass ∼6.5 × 109 M o˙. The EHTC also partnered with several international facilities in space and on the ground, to arrange an extensive, quasi-simultaneous multi-wavelength campaign. This Letter presents the results and analysis of this campaign, as well as the multi-wavelength data as a legacy data repository. We captured M87 in a historically low state, and the core flux dominates over HST-1 at high energies, making it possible to combine core flux constraints with the more spatially precise very long baseline interferometry data. We present the most complete simultaneous multi-wavelength spectrum of the active nucleus to date, and discuss the complexity and caveats of combining data from different spatial scales into one broadband spectrum. We apply two heuristic, isotropic leptonic single-zone models to provide insight into the basic source properties, but conclude that a structured jet is necessary to explain M87's spectrum. We can exclude that the simultaneous γ-ray emission is produced via inverse Compton emission in the same region producing the EHT mm-band emission, and further conclude that the γ-rays can only be produced in the inner jets (inward of HST-1) if there are strongly particle-dominated regions. Direct synchrotron emission from accelerated protons and secondaries cannot yet be excluded.
  •  
3.
  • Ghayvat, Hemant, et al. (författare)
  • Smart Aging System : Uncovering the Hidden Wellness Parameter for Well-Being Monitoring and Anomaly Detection
  • 2019
  • Ingår i: Sensors. - : MDPI. - 1424-8220. ; 19:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Ambiguities and anomalies in the Activity of Daily Living (ADL) patterns indicate deviations from Wellness. The monitoring of lifestyles could facilitate remote physicians or caregivers to give insight into symptoms of the disease and provide health improvement advice to residents; Objective: This research work aims to apply lifestyle monitoring in an ambient assisted living (AAL) system by diagnosing conduct and distinguishing variation from the norm with the slightest conceivable fake alert. In pursuing this aim, the main objective is to fill the knowledge gap of two contextual observations (i.e., day and time) in the frequent behavior modeling for an individual in AAL. Each sensing category has its advantages and restrictions. Only a single type of sensing unit may not manage composite states in practice and lose the activity of daily living. To boost the efficiency of the system, we offer an exceptional sensor data fusion technique through different sensing modalities; Methods: As behaviors may also change according to other contextual observations, including seasonal, weather (or temperature), and social interaction, we propose the design of a novel activity learning model by adding behavioral observations, which we name as the Wellness indices analysis model; Results: The ground-truth data are collected from four elderly houses, including daily activities, with a sample size of three hundred days plus sensor activation. The investigation results validate the success of our method. The new feature set from sensor data fusion enhances the system accuracy to (98.17% +/- 0.95) from (80.81% +/- 0.68). The performance evaluation parameters of the proposed model for ADL recognition are recorded for the 14 selected activities. These parameters are Sensitivity (0.9852), Specificity (0.9988), Accuracy (0.9974), F1 score (0.9851), False Negative Rate (0.0130).
  •  
4.
  • Li, Qiang, et al. (författare)
  • Microbial Necromass, Lignin, and Glycoproteins for Determining and Optimizing Blue Carbon Formation
  • 2024
  • Ingår i: Environmental Science and Technology. - : American Chemical Society (ACS). - 0013-936X .- 1520-5851. ; 58, s. 468-479
  • Tidskriftsartikel (refereegranskat)abstract
    • Coastal wetlands contribute to the mitigation of climate change through the sequestration of “blue carbon”. Microbial necromass, lignin, and glycoproteins (i.e., glomalin-related soil proteins (GRSP)), as important components of soil organic carbon (SOC), are sensitive to environmental change. However, their contributions to blue carbon formation and the underlying factors remain largely unresolved. To address this paucity of knowledge, we investigated their contributions to blue carbon formation along a salinity gradient in coastal marshes. Our results revealed decreasing contributions of microbial necromass and lignin to blue carbon as the salinity increased, while GRSP showed an opposite trend. Using random forest models, we showed that their contributions to SOC were dependent on microbial biomass and resource stoichiometry. In N-limited saline soils, contributions of microbial necromass to SOC decreased due to increased N-acquisition enzyme activity. Decreases in lignin contributions were linked to reduced mineral protection offered by short-range-ordered Fe (FeSRO). Partial least-squares path modeling (PLS-PM) further indicated that GRSP could increase microbial necromass and lignin formation by enhancing mineral protection. Our findings have implications for improving the accumulation of refractory and mineral-bound organic matter in coastal wetlands, considering the current scenario of heightened nutrient discharge and sea-level rise.
  •  
5.
  •  
6.
  •  
7.
  • Pandya, Sharnil, Researcher, 1984-, et al. (författare)
  • Smart Home Anti-Theft System : A Novel Approach for Near Real-Time Monitoring and Smart Home Security for Wellness Protocol
  • 2018
  • Ingår i: Applied System Innovation. - : MDPI. - 2571-5577. ; 1
  • Tidskriftsartikel (refereegranskat)abstract
    • The proposed research methodology aims to design a generally implementable framework for providing a house owner/member with the immediate notification of an ongoing theft (unauthorized access to their premises). For this purpose, a rigorous analysis of existing systems was undertaken to identify research gaps. The problems found with existing systems were that they can only identify the intruder after the theft, or cannot distinguish between human and non-human objects. Wireless Sensors Networks (WSNs) combined with the use of Internet of Things (IoT) and Cognitive Internet of Things are expanding smart home concepts and solutions, and their applications. The present research proposes a novel smart home anti-theft system that can detect an intruder, even if they have partially/fully hidden their face using clothing, leather, fiber, or plastic materials. The proposed system can also detect an intruder in the dark using a CCTV camera without night vision capability. The fundamental idea was to design a cost-effective and efficient system for an individual to be able to detect any kind of theft in real-time and provide instant notification of the theft to the house owner. The system also promises to implement home security with large video data handling in real-time. The investigation results validate the success of the proposed system. The system accuracy has been enhanced to 97.01%, 84.13, 78.19%, and 66.5%, in scenarios where a detected intruder had not hidden his/her face, hidden his/her face partially, fully, and was detected in the dark from 85%, 64.13%, 56.70%, and 44.01%.
  •  
8.
  • Yang, Chih-Wen, et al. (författare)
  • Epitaxial Growth and Determination of Band Alignment of Bi2Te3–WSe2 Vertical van der Waals Heterojunctions
  • 2020
  • Ingår i: ACS Materials Letters. - : American Chemical Society (ACS). - 2639-4979. ; 2:10, s. 1351-1359
  • Tidskriftsartikel (refereegranskat)abstract
    • Artificial heterojunctions formed by vertical stacking of dissimilar two-dimensional (2D) transition metal dichalcogenide (TMD) monolayer materials in a chosen sequence hold tantalizing prospects for futuristic atomically thin circuits. The emergence of 2D topological insulators (TI), including Bi2Te3, Bi2Se3, and Sb2Te3, represents a new class of 2D building blocks and can complement the existing artificial heterojunctions as a result of their intriguing surface states protected by the time-reversal symmetry. However, the determination of band alignments of such 2D TI/TMD vertical heterojunctions, the key parameter for designing HJ-based electronic/photonic devices, which lies in the development of epitaxy growth, remains in its infancy. Here, we demonstrate the epitaxy growth of 2D TI/TMD vertical heterojunctions comprised of Bi2Te3/WSe2 with atomically clean interfaces that are spectroscopically accessible, and theoretically tractable. Cross-sectional scanning transmission electron microscopy (STEM) images and the presence of interlayer-coupled characteristics from Raman spectroscopy collectively confirm the neat stacking of Bi2Te3/WSe2 with the absence of unwanted containments. Microbeam X-ray photoelectron spectroscopy (ÎŒXPS) measurement coupled with the density functional theory (DFT) calculations and electrical characteristics of field effect transistors quantitatively reveals the type-II alignment of vertically stacked of quintuple layers (QL) Bi2Te3/WSe2. Meanwhile, the type-III band emerges when transitioning to multi-quintuple layer (MQL) Bi2Te3/WSe2. The finding here provides a well-defined example of the epitaxy growth paradigm, the interlayer coupling-electronic properties relationship, for these emerging 2D TI/TMDs vertical heterojunctions. © 2020 American Chemical Society.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy