SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Chontos Ashley) "

Sökning: WFRF:(Chontos Ashley)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Beard, Corey, et al. (författare)
  • The TESS-Keck Survey. XVII. Precise Mass Measurements in a Young, High-multiplicity Transiting Planet System Using Radial Velocities and Transit Timing Variations
  • 2024
  • Ingår i: Astronomical Journal. - 1538-3881 .- 0004-6256. ; 167:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a radial velocity (RV) analysis of TOI-1136, a bright Transiting Exoplanet Survey Satellite (TESS) system with six confirmed transiting planets, and a seventh single-transiting planet candidate. All planets in the system are amenable to transmission spectroscopy, making TOI-1136 one of the best targets for intra-system comparison of exoplanet atmospheres. TOI-1136 is young (similar to 700 Myr), and the system exhibits transit timing variations (TTVs). The youth of the system contributes to high stellar variability on the order of 50 m s-1, much larger than the likely RV amplitude of any of the transiting exoplanets. Utilizing 359 High Resolution Echelle Spectrometer and Automated Planet Finder RVs collected as part of the TESS-Keck Survey, and 51 High-Accuracy Radial velocity Planetary Searcher North RVs, we experiment with a joint TTV-RV fit. With seven possible transiting planets, TTVs, more than 400 RVs, and a stellar activity model, we posit that we may be presenting the most complex mass recovery of an exoplanet system in the literature to date. By combining TTVs and RVs, we minimized Gaussian process overfitting and retrieved new masses for this system: (m b-g = 3.50-0.7+0.8 , 6.32-1.3+1.1 , 8.35-1.6+1.8 , 6.07-1.01+1.09 , 9.7-3.7+3.9 , 5.6-3.2+4.1 M circle plus). We are unable to significantly detect the mass of the seventh planet candidate in the RVs, but we are able to loosely constrain a possible orbital period near 80 days. Future TESS observations might confirm the existence of a seventh planet in the system, better constrain the masses and orbital properties of the known exoplanets, and generally shine light on this scientifically interesting system.
  •  
2.
  • Carleo, Ilaria, et al. (författare)
  • The Multiplanet System TOI-421*
  • 2020
  • Ingår i: Astronomical Journal. - : American Astronomical Society. - 1538-3881 .- 0004-6256. ; 160:3
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the discovery of a warm Neptune and a hot sub-Neptune transiting TOI-421 (BD-14 1137, TIC 94986319), a bright (V = 9.9) G9 dwarf star in a visual binary system observed by the Transiting Exoplanet Survey Satellite (TESS) space mission in Sectors 5 and 6. We performed ground-based follow-up observations-comprised of Las Cumbres Observatory Global Telescope transit photometry, NIRC2 adaptive optics imaging, and FIbre-fed Echelle Spectrograph, CORALIE, High Accuracy Radial velocity Planet Searcher, High Resolution echelle Spectrometer, and Planet Finder Spectrograph high-precision Doppler measurements-and confirmed the planetary nature of the 16 day transiting candidate announced by the TESS team. We discovered an additional radial velocity signal with a period of five days induced by the presence of a second planet in the system, which we also found to transit its host star. We found that the inner mini-Neptune, TOI-421 b, has an orbital period of P-b = 5.19672 +/- 0.00049 days, a mass of M-b = 7.17 +/- 0.66 M-circle plus, and a radius of R-b = R-circle plus, whereas the outer warm Neptune, TOI-421 c, has a period of P-c = 16.06819 +/- 0.00035 days, a mass of M-c = 16.42(-1.04)(+1.06)M(circle plus), a radius of R-c = 5.09(-0.15)(+0.16)R(circle plus), and a density of rho(c) = 0.685(-0.072)(+0.080) cm(-3). With its characteristics, the outer planet (rho(c) = 0.685(-0.0072)(+0.080) cm(-3)) is placed in the intriguing class of the super-puffy mini-Neptunes. TOI-421 b and TOI-421 c are found to be well-suited for atmospheric characterization. Our atmospheric simulations predict significant Ly alpha transit absorption, due to strong hydrogen escape in both planets, as well as the presence of detectable CH4 in the atmosphere of TOI-421 c if equilibrium chemistry is assumed.
  •  
3.
  • Hon, Marc, et al. (författare)
  • A close-in giant planet escapes engulfment by its star
  • 2023
  • Ingår i: Nature. - : Springer Nature. - 0028-0836 .- 1476-4687. ; 618:7967, s. 917-920
  • Tidskriftsartikel (refereegranskat)abstract
    • When main-sequence stars expand into red giants, they are expected to engulf close-in planets(1-5). Until now, the absence of planets with short orbital periods around post-expansion, core-helium-burning red giants(6-8) has been interpreted as evidence that short-period planets around Sun-like stars do not survive the giant expansion phase of their host stars(9). Here we present the discovery that the giant planet 8 Ursae Minoris b(10) orbits a core-helium-burning red giant. At a distance of only 0.5 au from its host star, the planet would have been engulfed by its host star, which is predicted by standard single-star evolution to have previously expanded to a radius of 0.7 au. Given the brief lifetime of helium-burning giants, the nearly circular orbit of the planet is challenging to reconcile with scenarios in which the planet survives by having a distant orbit initially. Instead, the planet may have avoided engulfment through a stellar merger that either altered the evolution of the host star or produced 8 Ursae Minoris b as a second-generation planet(11). This system shows that core-helium-burning red giants can harbour close planets and provides evidence for the role of non-canonical stellar evolution in the extended survival of late-stage exoplanetary systems.
  •  
4.
  • Llop-Sayson, Jorge, et al. (författare)
  • Constraining the Orbit and Mass of epsilon Eridani b with Radial Velocities, Hipparcos IAD-Gaia DR2 Astrometry, and Multiepoch Vortex Coronagraphy Upper Limits
  • 2021
  • Ingår i: Astronomical Journal. - : Institute of Physics Publishing (IOPP). - 0004-6256 .- 1538-3881. ; 162:5
  • Tidskriftsartikel (refereegranskat)abstract
    • epsilon Eridani is a young planetary system hosting a complex multibelt debris disk and a confirmed Jupiter-like planet orbiting at 3.48 au from its host star. Its age and architecture are thus reminiscent of the early Solar System. The most recent study of Mawet et al., which combined radial-velocity data and Ms-band direct imaging upper limits, started to constrain the planet's orbital parameters and mass, but are still affected by large error bars and degeneracies. Here we make use of the most recent data compilation from three different techniques to further refine epsilon Eridani b's properties: RVs, absolute astrometry measurements from the Hipparcos and Gaia missions, and new Keck/NIRC2 Ms-band vortex coronagraph images. We combine this data in a Bayesian framework. We find a new mass, M-b = 0.66(-0.09)(+0.12) M-Jup, and inclination, i = 78.81(-22.41 degrees)(+29.34), with at least a factor 2 of improvement over previous uncertainties. We also report updated constraints on the longitude of the ascending node, the argument of the periastron, and the time of periastron passage. With these updated parameters, we can better predict the position of the planet at any past and future epoch, which can greatly help define the strategy and planning of future observations and with subsequent data analysis. In particular, these results can assist the search for a direct detection with JWST and the Nancy Grace Roman Space Telescope's coronagraph instrument.
  •  
5.
  • Metcalfe, Travis S., et al. (författare)
  • Weakened Magnetic Braking in the Exoplanet Host Star 51 Peg
  • 2024
  • Ingår i: Astrophysical Journal Letters. - : Institute of Physics Publishing (IOPP). - 2041-8205 .- 2041-8213. ; 960:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The consistently low activity level of the old solar analog 51 Peg not only facilitated the discovery of the first hot Jupiter, but also led to the suggestion that the star could be experiencing a magnetic grand minimum. However, the 50 yr time series showing minimal chromospheric variability could also be associated with the onset of weakened magnetic braking (WMB), where sufficiently slow rotation disrupts cycling activity and the production of large-scale magnetic fields by the stellar dynamo, thereby shrinking the Alfven radius and inhibiting the efficient loss of angular momentum to magnetized stellar winds. In this Letter, we evaluate the magnetic evolutionary state of 51 Peg by estimating its wind braking torque. We use new spectropolarimetric measurements from the Large Binocular Telescope to reconstruct the large-scale magnetic morphology, we reanalyze archival X-ray measurements to estimate the mass-loss rate, and we detect solar-like oscillations in photometry from the Transiting Exoplanet Survey Satellite, yielding precise stellar properties from asteroseismology. Our estimate of the wind braking torque for 51 Peg clearly places it in the WMB regime, driven by changes in the mass-loss rate and the magnetic field strength and morphology that substantially exceed theoretical expectations. Although our revised stellar properties have minimal consequences for the characterization of the exoplanet, they have interesting implications for the current space weather environment of the system.
  •  
6.
  • Turtelboom,, et al. (författare)
  • The TESS-Keck Survey. XI. Mass Measurements for Four Transiting Sub-Neptunes Orbiting K Dwarf TOI-1246
  • 2022
  • Ingår i: Astronomical Journal. - : American Astronomical Society. - 1538-3881 .- 0004-6256. ; 163:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Multiplanet systems are valuable arenas for investigating exoplanet architectures and comparing planetary siblings. TOI-1246 is one such system, with a moderately bright K dwarf (V = 11.6, K = 9.9) and four transiting sub-Neptunes identified by TESS with orbital periods of 4.31, 5.90, 18.66, and 37.92 days. We collected 130 radial velocity observations with Keck/HIRES and TNG/HARPS-N to measure planet masses. We refit the 14 sectors of TESS photometry to refine planet radii (2.97 +/- 0.06 R (circle plus), 2.47 +/- 0.08 R (circle plus), 3.46 +/- 0.09 R (circle plus), and 3.72 +/- 0.16 R (circle plus)) and confirm the four planets. We find that TOI-1246 e is substantially more massive than the three inner planets (8.1 +/- 1.1 M (circle plus), 8.8 +/- 1.2 M (circle plus), 5.3 +/- 1.7 M (circle plus), and 14.8 +/- 2.3 M (circle plus)). The two outer planets, TOI-1246 d and TOI-1246 e, lie near to the 2:1 resonance (P (e)/P ( d ) = 2.03) and exhibit transit-timing variations. TOI-1246 is one of the brightest four-planet systems, making it amenable for continued observations. It is one of only five systems with measured masses and radii for all four transiting planets. The planet densities range from 0.70 +/- 0.24 to 3.21 +/- 0.44 g cm(-3), implying a range of bulk and atmospheric compositions. We also report a fifth planet candidate found in the RV data with a minimum mass of 25.6 +/- 3.6 M (circle plus). This planet candidate is exterior to TOI-1246 e, with a candidate period of 93.8 days, and we discuss the implications if it is confirmed to be planetary in nature.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy