SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Cohen David) ;lar1:(umu)"

Sökning: WFRF:(Cohen David) > Umeå universitet

  • Resultat 1-10 av 53
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Stanaway, Jeffrey D., et al. (författare)
  • Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990-2017: A systematic analysis for the Global Burden of Disease Study 2017
  • 2018
  • Ingår i: The Lancet. - 1474-547X .- 0140-6736. ; 392:10159, s. 1923-1994
  • Tidskriftsartikel (refereegranskat)abstract
    • Background The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017 comparative risk assessment (CRA) is a comprehensive approach to risk factor quantification that offers a useful tool for synthesising evidence on risks and risk-outcome associations. With each annual GBD study, we update the GBD CRA to incorporate improved methods, new risks and risk-outcome pairs, and new data on risk exposure levels and risk- outcome associations. Methods We used the CRA framework developed for previous iterations of GBD to estimate levels and trends in exposure, attributable deaths, and attributable disability-adjusted life-years (DALYs), by age group, sex, year, and location for 84 behavioural, environmental and occupational, and metabolic risks or groups of risks from 1990 to 2017. This study included 476 risk-outcome pairs that met the GBD study criteria for convincing or probable evidence of causation. We extracted relative risk and exposure estimates from 46 749 randomised controlled trials, cohort studies, household surveys, census data, satellite data, and other sources. We used statistical models to pool data, adjust for bias, and incorporate covariates. Using the counterfactual scenario of theoretical minimum risk exposure level (TMREL), we estimated the portion of deaths and DALYs that could be attributed to a given risk. We explored the relationship between development and risk exposure by modelling the relationship between the Socio-demographic Index (SDI) and risk-weighted exposure prevalence and estimated expected levels of exposure and risk-attributable burden by SDI. Finally, we explored temporal changes in risk-attributable DALYs by decomposing those changes into six main component drivers of change as follows: (1) population growth; (2) changes in population age structures; (3) changes in exposure to environmental and occupational risks; (4) changes in exposure to behavioural risks; (5) changes in exposure to metabolic risks; and (6) changes due to all other factors, approximated as the risk-deleted death and DALY rates, where the risk-deleted rate is the rate that would be observed had we reduced the exposure levels to the TMREL for all risk factors included in GBD 2017.
  •  
3.
  • Lozano, Rafael, et al. (författare)
  • Measuring progress from 1990 to 2017 and projecting attainment to 2030 of the health-related Sustainable Development Goals for 195 countries and territories: a systematic analysis for the Global Burden of Disease Study 2017
  • 2018
  • Ingår i: The Lancet. - : Elsevier. - 1474-547X .- 0140-6736. ; 392:10159, s. 2091-2138
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Efforts to establish the 2015 baseline and monitor early implementation of the UN Sustainable Development Goals (SDGs) highlight both great potential for and threats to improving health by 2030. To fully deliver on the SDG aim of “leaving no one behind”, it is increasingly important to examine the health-related SDGs beyond national-level estimates. As part of the Global Burden of Diseases, Injuries, and Risk Factors Study 2017 (GBD 2017), we measured progress on 41 of 52 health-related SDG indicators and estimated the health-related SDG index for 195 countries and territories for the period 1990–2017, projected indicators to 2030, and analysed global attainment. Methods: We measured progress on 41 health-related SDG indicators from 1990 to 2017, an increase of four indicators since GBD 2016 (new indicators were health worker density, sexual violence by non-intimate partners, population census status, and prevalence of physical and sexual violence [reported separately]). We also improved the measurement of several previously reported indicators. We constructed national-level estimates and, for a subset of health-related SDGs, examined indicator-level differences by sex and Socio-demographic Index (SDI) quintile. We also did subnational assessments of performance for selected countries. To construct the health-related SDG index, we transformed the value for each indicator on a scale of 0–100, with 0 as the 2·5th percentile and 100 as the 97·5th percentile of 1000 draws calculated from 1990 to 2030, and took the geometric mean of the scaled indicators by target. To generate projections through 2030, we used a forecasting framework that drew estimates from the broader GBD study and used weighted averages of indicator-specific and country-specific annualised rates of change from 1990 to 2017 to inform future estimates. We assessed attainment of indicators with defined targets in two ways: first, using mean values projected for 2030, and then using the probability of attainment in 2030 calculated from 1000 draws. We also did a global attainment analysis of the feasibility of attaining SDG targets on the basis of past trends. Using 2015 global averages of indicators with defined SDG targets, we calculated the global annualised rates of change required from 2015 to 2030 to meet these targets, and then identified in what percentiles the required global annualised rates of change fell in the distribution of country-level rates of change from 1990 to 2015. We took the mean of these global percentile values across indicators and applied the past rate of change at this mean global percentile to all health-related SDG indicators, irrespective of target definition, to estimate the equivalent 2030 global average value and percentage change from 2015 to 2030 for each indicator. Findings: The global median health-related SDG index in 2017 was 59·4 (IQR 35·4–67·3), ranging from a low of 11·6 (95% uncertainty interval 9·6–14·0) to a high of 84·9 (83·1–86·7). SDG index values in countries assessed at the subnational level varied substantially, particularly in China and India, although scores in Japan and the UK were more homogeneous. Indicators also varied by SDI quintile and sex, with males having worse outcomes than females for non-communicable disease (NCD) mortality, alcohol use, and smoking, among others. Most countries were projected to have a higher health-related SDG index in 2030 than in 2017, while country-level probabilities of attainment by 2030 varied widely by indicator. Under-5 mortality, neonatal mortality, maternal mortality ratio, and malaria indicators had the most countries with at least 95% probability of target attainment. Other indicators, including NCD mortality and suicide mortality, had no countries projected to meet corresponding SDG targets on the basis of projected mean values for 2030 but showed some probability of attainment by 2030. For some indicators, including child malnutrition, several infectious diseases, and most violence measures, the annualised rates of change required to meet SDG targets far exceeded the pace of progress achieved by any country in the recent past. We found that applying the mean global annualised rate of change to indicators without defined targets would equate to about 19% and 22% reductions in global smoking and alcohol consumption, respectively; a 47% decline in adolescent birth rates; and a more than 85% increase in health worker density per 1000 population by 2030. Interpretation: The GBD study offers a unique, robust platform for monitoring the health-related SDGs across demographic and geographic dimensions. Our findings underscore the importance of increased collection and analysis of disaggregated data and highlight where more deliberate design or targeting of interventions could accelerate progress in attaining the SDGs. Current projections show that many health-related SDG indicators, NCDs, NCD-related risks, and violence-related indicators will require a concerted shift away from what might have driven past gains—curative interventions in the case of NCDs—towards multisectoral, prevention-oriented policy action and investments to achieve SDG aims. Notably, several targets, if they are to be met by 2030, demand a pace of progress that no country has achieved in the recent past. The future is fundamentally uncertain, and no model can fully predict what breakthroughs or events might alter the course of the SDGs. What is clear is that our actions—or inaction—today will ultimately dictate how close the world, collectively, can get to leaving no one behind by 2030.
  •  
4.
  • Engert, Andreas, et al. (författare)
  • The European Hematology Association Roadmap for European Hematology Research : a consensus document
  • 2016
  • Ingår i: Haematologica. - Pavia, Italy : Ferrata Storti Foundation (Haematologica). - 0390-6078 .- 1592-8721. ; 101:2, s. 115-208
  • Tidskriftsartikel (refereegranskat)abstract
    • The European Hematology Association (EHA) Roadmap for European Hematology Research highlights major achievements in diagnosis and treatment of blood disorders and identifies the greatest unmet clinical and scientific needs in those areas to enable better funded, more focused European hematology research. Initiated by the EHA, around 300 experts contributed to the consensus document, which will help European policy makers, research funders, research organizations, researchers, and patient groups make better informed decisions on hematology research. It also aims to raise public awareness of the burden of blood disorders on European society, which purely in economic terms is estimated at (sic)23 billion per year, a level of cost that is not matched in current European hematology research funding. In recent decades, hematology research has improved our fundamental understanding of the biology of blood disorders, and has improved diagnostics and treatments, sometimes in revolutionary ways. This progress highlights the potential of focused basic research programs such as this EHA Roadmap. The EHA Roadmap identifies nine 'sections' in hematology: normal hematopoiesis, malignant lymphoid and myeloid diseases, anemias and related diseases, platelet disorders, blood coagulation and hemostatic disorders, transfusion medicine, infections in hematology, and hematopoietic stem cell transplantation. These sections span 60 smaller groups of diseases or disorders. The EHA Roadmap identifies priorities and needs across the field of hematology, including those to develop targeted therapies based on genomic profiling and chemical biology, to eradicate minimal residual malignant disease, and to develop cellular immunotherapies, combination treatments, gene therapies, hematopoietic stem cell treatments, and treatments that are better tolerated by elderly patients.
  •  
5.
  • Abdulle, Assyr, et al. (författare)
  • High weak order methods for stochastic differential equations based on modified equations
  • 2012
  • Ingår i: SIAM Journal on Scientific Computing. - : Society for Industrial & Applied Mathematics (SIAM). - 1064-8275 .- 1095-7197. ; 34:3, s. A1800-A1823
  • Tidskriftsartikel (refereegranskat)abstract
    • Inspired by recent advances in the theory of modified differential equations, we propose a new methodology for constructing numerical integrators with high weak order for the time integration of stochastic differential equations. This approach is illustrated with the constructions of new methods of weak order two, in particular, semi-implicit integrators well suited for stiff (mean-square stable) stochastic problems, and implicit integrators that exactly conserve all quadratic firstintegrals of a stochastic dynamical system. Numerical examples confirm the theoretical results and show the versatility of our methodology.
  •  
6.
  • Anton, Rikard, et al. (författare)
  • A fully discrete approximation of the one-dimensional stochastic heat equation
  • 2020
  • Ingår i: IMA Journal of Numerical Analysis. - : Oxford University Press. - 0272-4979 .- 1464-3642. ; 40:1, s. 247-284
  • Tidskriftsartikel (refereegranskat)abstract
    • A fully discrete approximation of the one-dimensional stochastic heat equation driven by multiplicative space–time white noise is presented. The standard finite difference approximation is used in space and a stochastic exponential method is used for the temporal approximation. Observe that the proposed exponential scheme does not suffer from any kind of CFL-type step size restriction. When the drift term and the diffusion coefficient are assumed to be globally Lipschitz this explicit time integrator allows for error bounds in Lq(Ω), for all q ≥ 2, improving some existing results in the literature. On top of this we also prove almost sure convergence of the numerical scheme. In the case of nonglobally Lipschitz coefficients, under a strong assumption about pathwise uniqueness of the exact solution, convergence in probability of the numerical solution to the exact solution is proved. Numerical experiments are presented to illustrate the theoretical results.
  •  
7.
  • Anton, Rikard, 1989- (författare)
  • Exponential integrators for stochastic partial differential equations
  • 2018
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Stochastic partial differential equations (SPDEs) have during the past decades become an important tool for modeling systems which are influenced by randomness. Because of the complex nature of SPDEs, knowledge of efficient numerical methods with good convergence and geometric properties is of considerable importance. Due to this, numerical analysis of SPDEs has become an important and active research field.The thesis consists of four papers, all dealing with time integration of different SPDEs using exponential integrators. We analyse exponential integrators for the stochastic wave equation, the stochastic heat equation, and the stochastic Schrödinger equation. Our primary focus is to study strong order of convergence of temporal approximations. However, occasionally, we also analyse space approximations such as finite element and finite difference approximations. In addition to this, for some SPDEs, we consider conservation properties of numerical discretizations.As seen in this thesis, exponential integrators for SPDEs have many benefits over more traditional integrators such as Euler-Maruyama schemes or the Crank-Nicolson-Maruyama scheme. They are explicit and therefore very easy to implement and use in practice. Also, they are excellent at handling stiff problems, which naturally arise from spatial discretizations of SPDEs. While many explicit integrators suffer step size restrictions due to stability issues, exponential integrators do not in general.In Paper 1 we consider a full discretization of the stochastic wave equation driven by multiplicative noise. We use a finite element method for the spatial discretization, and for the temporal discretization we use a stochastic trigonometric method. In the first part of the paper, we prove mean-square convergence of the full approximation. In the second part, we study the behavior of the total energy, or Hamiltonian, of the wave equation. It is well known that for deterministic (Hamiltonian) wave equations, the total energy remains constant in time. We prove that for stochastic wave equations with additive noise, the expected energy of the exact solution grows linearly with time. We also prove that the numerical approximation produces a small error in this linear drift.In the second paper, we study an exponential integrator applied to the time discretization of the stochastic Schrödinger equation with a multiplicative potential. We prove strong convergence order 1 and 1/2 for additive and multiplicative noise, respectively. The deterministic linear Schrödinger equation has several conserved quantities, including the energy, the mass, and the momentum. We first show that for Schrödinger equations driven by additive noise, the expected values of these quantities grow linearly with time. The exponential integrator is shown to preserve these linear drifts for all time in the case of a stochastic Schrödinger equation without potential. For the equation with a multiplicative potential, we obtain a small error in these linear drifts.The third paper is devoted to studying a full approximation of the one-dimensional stochastic heat equation. For the spatial discretization we use a finite difference method and an exponential integrator is used for the temporal approximation. We prove mean-square convergence and almost sure convergence of the approximation when the coefficients of the problem are assumed to be Lipschitz continuous. For non-Lipschitz coefficients, we prove convergence in probability.In Paper 4 we revisit the stochastic Schrödinger equation. We consider this SPDE with a power-law nonlinearity. This nonlinearity is not globally Lipschitz continuous and the exact solution is not assumed to remain bounded for all times. These difficulties are handled by considering a truncated version of the equation and by working with stopping times and random time intervals. We prove almost sure convergence and convergence in probability for the exponential integrator as well as convergence orders of ½ − ?, for all ? > 0, and 1/2, respectively.
  •  
8.
  • Anton, Rikard, et al. (författare)
  • Exponential integrators for stochastic Schrödinger equations driven by Itô noise
  • 2018
  • Ingår i: Journal of Computational Mathematics. - : Global Science Press. - 0254-9409 .- 1991-7139. ; 36:2, s. 276-309
  • Tidskriftsartikel (refereegranskat)abstract
    • We study an explicit exponential scheme for the time discretisation of stochastic Schr¨odinger Equations Driven by additive or Multiplicative Itô Noise. The numerical scheme is shown to converge with strong order 1 if the noise is additive and with strong order 1/2 for multiplicative noise. In addition, if the noise is additive, we show that the exact solutions of the linear stochastic Schr¨odinger equations satisfy trace formulas for the expected mass, energy, and momentum (i. e., linear drifts in these quantities). Furthermore, we inspect the behaviour of the numerical solutions with respect to these trace formulas. Several numerical simulations are presented and confirm our theoretical results.
  •  
9.
  • Anton, Rikard, et al. (författare)
  • Full discretization of semilinear stochastic wave equations driven by multiplicative noise
  • 2016
  • Ingår i: SIAM Journal on Numerical Analysis. - 0036-1429 .- 1095-7170. ; 54:2, s. 1093-1119
  • Tidskriftsartikel (refereegranskat)abstract
    • A fully discrete approximation of the semilinear stochastic wave equation driven by multiplicative noise is presented. A standard linear finite element approximation is used in space, and a stochastic trigonometric method is used for the temporal approximation. This explicit time integrator allows for mean-square error bounds independent of the space discretization and thus does not suffer from a step size restriction as in the often used Stormer-Verlet leapfrog scheme. Furthermore, it satisfies an almost trace formula (i.e., a linear drift of the expected value of the energy of the problem). Numerical experiments are presented and confirm the theoretical results.
  •  
10.
  • Araujo-Cabarcas, Juan Carlos, 1981- (författare)
  • Reliable hp finite element computations of scattering resonances in nano optics
  • 2019
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Eigenfrequencies are commonly studied in wave propagation problems, as they are important in the analysis of closed cavities such as a microwave oven. For open systems, energy leaks into infinity and therefore scattering resonances are used instead of eigenfrequencies. An interesting application where resonances take an important place is in whispering gallery mode resonators.The objective of the thesis is the reliable and accurate approximation of scattering resonances using high order finite element methods. The discussion focuses on the electromagnetic scattering resonances in metal-dielectric nano-structures using a Drude-Lorentz model for the description of the material properties. A scattering resonance pair satisfies a reduced wave equationand an outgoing wave condition. In this thesis, the outgoing wave condition is replaced by a Dirichlet-to-Neumann map, or a Perfectly Matched Layer. For electromagnetic waves and for acoustic waves, the reduced wave equation is discretized with finite elements. As a result, the scattering resonance problem is transformed into a nonlinear eigenvalue problem.In addition to the correct approximation of the true resonances, a large number of numerical solutions that are unrelated to the physical problem are also computed in the solution process. A new method based on a volume integral equation is developed to remove these false solutions.The main results of the thesis are a novel method for removing false solutions of the physical problem, efficient solutions of non-linear eigenvalue problems, and a new a-priori based refinement strategy for high order finite element methods. The overall material in the thesis translates into a reliable and accurate method to compute scattering resonances in physics and engineering.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 53
Typ av publikation
tidskriftsartikel (43)
konferensbidrag (6)
doktorsavhandling (3)
annan publikation (1)
Typ av innehåll
refereegranskat (45)
övrigt vetenskapligt/konstnärligt (8)
Författare/redaktör
Cohen, David (36)
Schutte, Aletta E. (4)
Ärnlöv, Johan, 1970- (3)
Hankey, Graeme J. (3)
Weiderpass, Elisabet ... (3)
Wijeratne, Tissa (2)
visa fler...
Sahebkar, Amirhossei ... (2)
Wang, Xin (2)
Hassankhani, Hadi (2)
Liu, Yang (2)
Bassat, Quique (2)
McKee, Martin (2)
Madotto, Fabiana (2)
Koyanagi, Ai (2)
Castro, Franz (2)
Koul, Parvaiz A. (2)
Edvardsson, David (2)
Cooper, Cyrus (2)
Brenner, Hermann (2)
Dhimal, Meghnath (2)
Vaduganathan, Muthia ... (2)
Sheikh, Aziz (2)
Acharya, Pawan (2)
Wang, Jiguang (2)
Gething, Peter W. (2)
Hay, Simon I. (2)
Chalmers, John (2)
Afshin, Ashkan (2)
Cornaby, Leslie (2)
Abbafati, Cristiana (2)
Abebe, Zegeye (2)
Afarideh, Mohsen (2)
Agrawal, Sutapa (2)
Alahdab, Fares (2)
Badali, Hamid (2)
Badawi, Alaa (2)
Bensenor, Isabela M. (2)
Bernabe, Eduardo (2)
Dandona, Lalit (2)
Dandona, Rakhi (2)
Esteghamati, Alireza (2)
Farvid, Maryam S. (2)
Feigin, Valery L. (2)
Fernandes, Joao C. (2)
Geleijnse, Johanna M ... (2)
Grosso, Giuseppe (2)
Hamidi, Samer (2)
Harikrishnan, Sivada ... (2)
Hassen, Hamid Yimam (2)
Islami, Farhad (2)
visa färre...
Lärosäte
Chalmers tekniska högskola (36)
Göteborgs universitet (7)
Lunds universitet (5)
Karolinska Institutet (5)
Högskolan Dalarna (3)
visa fler...
Uppsala universitet (2)
Linköpings universitet (2)
Stockholms universitet (1)
Södertörns högskola (1)
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (53)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (46)
Medicin och hälsovetenskap (9)
Teknik (4)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy