SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Combes F.) ;pers:(Dasyra K. M.)"

Sökning: WFRF:(Combes F.) > Dasyra K. M.

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Audibert, A., et al. (författare)
  • ALMA captures feeding and feedback from the active galactic nucleus in NGC 613
  • 2019
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 632
  • Tidskriftsartikel (refereegranskat)abstract
    • We report ALMA observations of CO(3-2) emission in the Seyfert/nuclear starburst galaxy NGC 613, at a spatial resolution of 17 pc, as part of our NUclei of GAlaxies (NUGA) sample. Our aim is to investigate the morphology and dynamics of the gas inside the central kiloparsec, and to probe nuclear fueling and feedback phenomena. The morphology of CO(3-2) line emission reveals a two-arm trailing nuclear spiral at r≤ 100 pc and a circumnuclear ring at a radius of ∼350 pc that is coincident with the star-forming ring seen in the optical images. Also, we find evidence for a filamentary structure connecting the ring and the nuclear spiral. The ring reveals two breaks into two winding spiral arms corresponding to the dust lanes in the optical images. The molecular gas in the galaxy disk is in a remarkably regular rotation, however the kinematics in the nuclear region are very skewed. The nuclear spectrum of CO and dense gas tracers HCN(4-3), HCO+(4-3), and CS(7-6) show broad wings up to ±300 km s-1, associated with a molecular outflow emanating from the nucleus (r ∼ 25 pc). We derive a molecular outflow mass Mout=2 × 106 M⊙ and a mass outflow rate of M out = 27 M⊙ yr-1. The molecular outflow energetics exceed the values predicted by AGN feedback models: the kinetic power of the outflow corresponds to PK, out=20%LAGN and the momentum rate is M outv ∼400LAGN/c. The outflow is mainly boosted by the AGN through entrainment by the radio jet, but given the weak nuclear activity of NGC 613, we might be witnessing a fossil outflow resulting from a previously strong AGN that has now faded. Furthermore, the nuclear trailing spiral observed in CO emission is inside the inner Lindblad resonance ring of the bar. We compute the gravitational torques exerted in the gas to estimate the efficiency of the angular momentum exchange. The gravity torques are negative from 25 to 100 pc and the gas loses its angular momentum in a rotation period, providing evidence for a highly efficient inflow towards the center. This phenomenon shows that the massive central black hole has significant dynamical influence on the gas, triggering the inflowing of molecular gas to feed the black hole.
  •  
2.
  • Audibert, A., et al. (författare)
  • Black hole feeding and star formation in NGC 1808
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 656
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on Atacama Large Millimeter Array (ALMA) observations of CO(3-2) emission in the Seyfert2/starburst galaxy NGC1808, at a spatial resolution of 4 pc. Our aim is to investigate the morphology and dynamics of the gas inside the central 0.5 kpc and to probe the nuclear feeding and feedback phenomena. We discovered a nuclear spiral of radius 100 = 45 pc. Within it, we found a decoupled circumnuclear disk or molecular torus of a radius of 0:1300 = 6 pc. The HCN(4-3) and HCO+(4-3) and CS(7-6) dense gas line tracers were simultaneously mapped and detected in the nuclear spiral and they present the same misalignment in the molecular torus. At the nucleus, the HCN/HCO+ and HCN/CS ratios indicate the presence of an active galactic nucleus (AGN). The molecular gas shows regular rotation, within a radius of 400 pc, except for the misaligned disk inside the nuclear spiral arms. The computations of the torques exerted on the gas by the barred stellar potential reveal that the gas within a radius of 100 pc is feeding the nucleus on a timescale of five rotations or on an average timescale of 60 Myr. Some non-circular motions are observed towards the center, corresponding to the nuclear spiral arms. We cannot rule out that small extra kinematic perturbations could be interpreted as a weak outflow attributed to AGN feedback. The molecular outflow detected at 250 pc in the NE direction is likely due to supernovae feedback and it is connected to the kpc-scale superwind.
  •  
3.
  • Combes, F., et al. (författare)
  • ALMA observations of molecular tori around massive black holes
  • 2019
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 623
  • Tidskriftsartikel (refereegranskat)abstract
    • We report Atacama Large Millimeter/submillimeter Array (ALMA) observations of CO(3-2) emission in a sample of seven Seyfert/LINER galaxies at the unprecedented spatial resolution of 0 .″ 1 = 4-8 pc. Our aim is to explore the close environment of active galactic nuclei (AGN), and the dynamical structures leading to their fueling, through the morphology and kinematics of the gas inside the sphere of influence of the black hole. The selected galaxies host low-luminosity AGN and have a wide range of activity types (Seyferts 1 to 2, LINERs), and barred or ringed morphologies. The observed maps reveal the existence of circumnuclear disk structures, defined by their morphology and decoupled kinematics, in most of the sample. We call these structures molecular tori, even though they often appear as disks without holes in the center. They have varying orientations along the line of sight, unaligned with the host galaxy orientation. The radius of the tori ranges from 6 to 27 pc, and their mass from 0.7 × 10 7 to 3.9 × 10 7 M · . The most edge-on orientations of the torus correspond to obscured Seyferts. In only one case (NGC 1365), the AGN is centered on the central gas hole of the torus. On a larger scale, the gas is always piled up in a few resonant rings 100 pc in scale that play the role of a reservoir to fuel the nucleus. In some cases, a trailing spiral is observed inside the ring, providing evidence for feeding processes. More frequently, the torus and the AGN are slightly off-centered with respect to the bar-resonant ring position, implying that the black hole is wandering by a few 10 pc amplitude around the center of mass of the galaxy. Our spatial resolution allows us to measure gas velocities inside the sphere of influence of the central black holes. By fitting the observations with different simulated cubes, varying the torus inclination and the black hole mass, it is possible to estimate the mass of the central black hole, which is in general difficult for such late-type galaxies, with only a pseudo-bulge. In some cases, AGN feedback is revealed through a molecular outflow, which will be studied in detail in a subsequent article.
  •  
4.
  • Aalto, Susanne, 1964, et al. (författare)
  • A precessing molecular jet signaling an obscured, growing supermassive black hole in NGC 1377?
  • 2016
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 590, s. Art. no. A73-
  • Tidskriftsartikel (refereegranskat)abstract
    • With high resolution (0."25 × 0."18) ALMA CO 3-2 (345 GHz) observations of the nearby (D = 21 Mpc, 1" = 102 pc), extremely radio-quiet galaxy NGC 1377, we have discovered a high-velocity, very collimated nuclear outflow which we interpret as a molecular jet with a projected length of ± 150 pc. The launch region is unresolved and lies inside a radius r 40% of the flux in NGC 1377 and may be a slower, wide-angle molecular outflow which is partially entrained by the molecular jet. We discuss the driving mechanism of the molecular jet and suggest that it is either powered by a (faint) radio jet or by an accretion disk-wind similar to those found towards protostars. It seems unlikely that a massive jet could have been driven out by the current level of nuclear activity which should then have undergone rapid quenching. The light jet would only have expelled 10% of the inner gas and may facilitate nuclear activity instead of suppressing it. The nucleus of NGC 1377 harbours intense embedded activity and we detect emission from vibrationally excited HCN J = 4-3?2 = 1f which is consistent with hot gas and dust. We find large columns of H2 in the centre of NGC 1377 which may be a sign of a high rate of recent gas infall. The dynamical age ofthe molecular jet is short (
  •  
5.
  • Aalto, Susanne, 1964, et al. (författare)
  • Luminous, pc-scale CO 6-5 emission in the obscured nucleus of NGC 1377
  • 2017
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 608, s. A22-
  • Tidskriftsartikel (refereegranskat)abstract
    • High-resolution submillimeter line and continuum observations are important in probing the morphology, column density, and dynamics of the molecular gas and dust around obscured active galactic nuclei (AGNs). With high-resolution (0'.06 x 0'.05 (6 x 5 pc)) ALMA 690 GHz observations we have found bright (T-B > 80 K) and compact (full width half maximum size (FWHM) size of 10 x 7 pc) CO 6-5 line emission in the nuclear region of the extremely radio-quiet galaxy NGC 1377. The CO 6-5 intensity is partially aligned with the previously discovered jet/outflow of NGC 1377 and is tracing dense (n > 10(4 )cm(-3)) hot molecular gas at the base of the outflow. The velocity structure is complex and shifts across the jet/outflow are discussed in terms of separate overlapping kinematical components or rotation. High-velocity gas (Delta v +/- 145 km s(-1)) is detected inside r
  •  
6.
  • Belete, A. Bewketu, et al. (författare)
  • Molecular gas kinematics in the nuclear region of nearby Seyfert galaxies with ALMA
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 654
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The study of the distribution, morphology, and kinematics of cold molecular gas in the nuclear and circumnuclear regions of active galactic nuclei (AGNs) helps to characterise and hence to quantify the impact of the AGNs on the host galaxy over its lifetime. Aims. We present the analysis of the molecular gas in the nuclear regions of three Seyfert galaxies, NGC 4968, NGC 4845, and MCG-06-30-15, using Atacama Large sub-Millimetre Array (ALMA) observations of the CO(2-1) emission line. The aim is to determine the kinematics of the gas in the central (∼1 kpc) region and thereby to probe nuclear fueling and feedback of AGNs. Methods. We used two different softwares, namely the 3D-Based Analysis of Rotating Object via Line Observations and DiskFit, to model the kinematics of the gas in the molecular disc, and thereby to determine the gas rotation and any kinematical perturbations. Results. Circular motions dominate the kinematics of the molecular gas in the central discs, mainly in NGC 4845 and MCG-06-30-15; however there is clear evidence of non-circular motions in the central (∼1 kpc) region of NGC 4845 and NGC 4968. The strongest non-circular motion is detected in the inner disc of NGC 4968, mainly along the minor kinematic axis, with a velocity ∼115 km s-1. Of all DiskFit models, the bisymmetric model is found to give the best fit for NGC 4968 and NGC 4845, indicating that the observed non-circular motions in the inner disc of these galaxies could result from the nuclear barred structure, where the gas streams in elliptical orbits aligned along the bar. If the dynamics of NGC 4968 is modelled as a corotation pattern just outside of the bar, the bar pattern speed becomes ωb = 52 km s-1 kpc-1; the corotation is set at 3.5 kpc; and the inner Lindblad resonance (ILR) ring is R  =  300 pc, corresponding to the CO emission ring. In the NGC 4968 galaxy, the torques exerted on the gas by the bar are positive in the centre, within the gas nuclear ring, and negative outside. This shows that the gas is transiently trapped in the ILR. The comparison of the CO intensity maps with the map of the cold dust emission shows an absence of CO in the centre of NGC 4968; also the dust distribution and CO emission in and around the centre of NGC 4845 have similar extensions. The 1.2 mm ALMA continuum is peaked and compact in NGC 4968 and MCG-06-30-15, but their CO(2-1) emissions have extended distributions. Allowing the CO-to-H2 conversion factor αCO between 0.8 and 3.2, which is typical of nearby galaxies of the same type, the molecular mass M(H2) is estimated to be ∼3  -  12  ×  107  M⊙ (NGC 4968), ∼9  -  36  ×  107  M⊙ (NGC 4845), and ∼1  -  4  ×  107  M⊙ (MCG-06-30-15). Conclusions. We conclude that the observed non-circular motions in the molecular disc of NGC 4968 and likely those seen in NGC 4845 are due to the presence of the bar in the nuclear region. We discuss the possibility that the observed pattern in the kinematics might be a consequence of the presence of AGNs, and this might be the case for NGC 4845. At the current spectral and spatial resolution and sensitivity, we cannot claim any strong evidence in these sources of the long sought feedback or feeding effect resulting from the presence of AGNs.
  •  
7.
  • Fernandez-Ontiveros, J. A., et al. (författare)
  • A CO molecular gas wind 340 pc away from the Seyfert 2 nucleus in ESO420-G13 probes an elusive radio jet*
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 633
  • Tidskriftsartikel (refereegranskat)abstract
    • A prominent jet-driven outflow of CO(2-1) molecular gas is found along the kinematic minor axis of the Seyfert 2 galaxy ESO 420-G13, at a distance of 340-600 pc from the nucleus. The wind morphology resembles the characteristic funnel shape, formed by a highly collimated filamentary emission at the base, and likely traces the jet propagation through a tenuous medium, until a bifurcation point at 440 pc. Here the jet hits a dense molecular core and shatters, dispersing the molecular gas into several clumps and filaments within the expansion cone. We also trace the jet in ionised gas within the inner less than or similar to 340 pc using the [NeII](12.8 mu m) line emission, where the molecular gas follows a circular rotation pattern. The wind outflow carries a mass of similar to 8 x 10(6) M-circle dot at an average wind projected speed of similar to 160 km s(-1), which implies a mass outflow rate of similar to 14 M-circle dot yr(-1). Based on the structure of the outflow and the budget of energy and momentum, we discard radiation pressure from the active nucleus, star formation, and supernovae as possible launching mechanisms. ESO 420-G13 is the second case after NGC 1377 where a previously unknown jet is revealed through its interaction with the interstellar medium, suggesting that unknown jets in feeble radio nuclei might be more common than expected. Two possible jet-cloud configurations are discussed to explain an outflow at this distance from the AGN. The outflowing gas will likely not escape, thus a delay in the star formation rather than quenching is expected from this interaction, while the feedback effect would be confined within the central few hundred parsecs of the galaxy.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy