SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Combes F.) ;pers:(Mangum J. G.)"

Sökning: WFRF:(Combes F.) > Mangum J. G.

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Henkel, C., et al. (författare)
  • Molecular line emission in NGC 4945, imaged with ALMA
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 615
  • Tidskriftsartikel (refereegranskat)abstract
    • NGC 4945 is one of the nearest (D ≈ 3.8 Mpc; 1 00 ≈ 19 pc) starburst galaxies. To investigate the structure, dynamics, and composition of the dense nuclear gas of this galaxy, ALMA band 3 (λ ≈ 3−4 mm) observations were carried out with ≈2 00 resolution. Three HCN and two HC + isotopologues, CS, C 3 H 2 , SiO, HCO, and CH 3 C 2 H were measured. Spectral line imaging demonstrates the presence of a rotating nuclear disk of projected size 10 00 × 2 00 reaching out to a galactocentric radius of r ≈ 100 pc with position angle PA = 45 ◦ ± 2 ◦ , inclination i = 75 ◦ ± 2 ◦ and an unresolved bright central core of size <∼ 2 00 . The continuum source, representing mostly free-free radiation from star forming regions, is more compact than the nuclear disk by a linear factor of two but shows the same position angle and is centered 0 00 . 39 ± 0 00 . 14 northeast of the nuclear accretion disk defined by H 2 O maser emission. Near the systemic velocity but outside the nuclear disk, both HCN J = 1 → 0 and CS J = 2 → 1 delineate molecular arms of length >∼ 15 00 ( >∼ 285 pc) on opposite sides of the dynamical center. These are connected by a (deprojected) ≈ 0.6 kpc sized molecular bridge, likely a dense gaseous bar seen almost ends-on, shifting gas from the front and back side into the nuclear disk. Modeling this nuclear disk located farther inside (r <∼ 100 pc) with tilted rings provides a good fit by inferring a coplanar outflow reaching a characteristic deprojected velocity of ≈50 km s −1 . All our molecular lines, with the notable exception of CH 3 C 2 H, show significant absorption near the systemic velocity (≈571 km s −1 ), within the range ≈500-660 km s −1 . Apparently, only molecular transitions with low critical H 2 density (n crit<∼ 10 4 cm −3 ) do not show absorption. The velocity field of the nuclear disk, derived from CH 3 C 2 H, provides evidence for rigid rotation in the inner few arcseconds and a dynamical mass of M tot = (2.1 ± 0.2) × 10 8 M inside a galactocentric radius of 2 00 . 45 (≈45 pc), with a significantly flattened rotation curve farther out. Velocity integrated line intensity maps with most pronounced absorption show molecular peak positions up to ≈1 00 . 5 (≈30 pc) southwest of the continuum peak, presumably due to absorption, which appears to be most severe slightly northeast of the nuclear maser disk. A nitrogen isotope ratio of 14 N/ 15 N ≈ 200-450 is estimated. This range of values is much higher then previously reported on a tentative basis. Therefore, because 15 N is less abundant than expected, the question for strong 15 N enrichment by massive star ejecta in starbursts still remains to be settled.
  •  
2.
  • Falstad, Niklas, 1987, et al. (författare)
  • Hidden or missing outflows in highly obscured galaxy nuclei?
  • 2019
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 623
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding the nuclear growth and feedback processes in galaxies requires investigating their often obscured central regions. One way to do this is to use (sub)millimeter line emission from vibrationally excited HCN (HCN-vib), which is thought to trace warm and highly enshrouded galaxy nuclei. It has been suggested that the most intense HCN-vib emission from a galaxy is connected to a phase of nuclear growth that occurs before the nuclear feedback processes have been fully developed. Aims. We aim to investigate if there is a connection between the presence of strong HCN-vib emission and the development of feedback in (ultra)luminous infrared galaxies ((U)LIRGs). Methods. We collected literature and archival data to compare the luminosities of rotational lines of HCN-vib, normalized to the total infrared luminosity, to the median velocities of 119 μm OH absorption lines, potentially indicating outflows, in a total of 17 (U)LIRGs. Results. The most HCN-vib luminous systems all lack signatures of significant molecular outflows in the far-infrared OH absorption lines. However, at least some of the systems with bright HCN-vib emission have fast and collimated outflows that can be seen in spectral lines at longer wavelengths, including in millimeter emission lines of CO and HCN (in its vibrational ground state) and in radio absorption lines of OH. Conclusions. We conclude that the galaxy nuclei with the highest L HCN-vib /L IR do not drive wide-angle outflows that are detectable using the median velocities of far-infrared OH absorption lines. This is possibly because of an orientation effect in which sources oriented in such a way that their outflows are not along our line of sight also radiate a smaller proportion of their infrared luminosity in our direction. It could also be that massive wide-angle outflows destroy the deeply embedded regions responsible for bright HCN-vib emission, so that the two phenomena cannot coexist. This would strengthen the idea that vibrationally excited HCN traces a heavily obscured stage of evolution before nuclear feedback mechanisms are fully developed.
  •  
3.
  • Gorski, Mark, 1989, et al. (författare)
  • A spectacular galactic scale magnetohydrodynamic powered wind in ESO 320-G030
  • 2024
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 684
  • Tidskriftsartikel (refereegranskat)abstract
    • How galaxies regulate nuclear growth through gas accretion by supermassive black holes (SMBHs) is one of the most fundamental questions in galaxy evolution. One potential way to regulate nuclear growth is through a galactic wind that removes gas from the nucleus. It is unclear whether galactic winds are powered by jets, mechanical winds, radiation, or via magnetohydrodynamic (MHD) processes. Compact obscured nuclei represent a significant phase of galactic nuclear growth. These galaxies hide growing SMBHs or unusual starbursts in their very opaque, extremely compact (r < 100 pc) centres. They are found in approximately 30% of the luminous and ultra-luminous infrared galaxy population. Here, we present high-resolution ALMA observations (∼30 mas, ∼5 pc) of ground-state and vibrationally excited HCN towards ESO 320-G030 (IRAS 11506-3851). ESO 320-G030 is an isolated luminous infrared galaxy known to host a compact obscured nucleus and a kiloparsec-scale molecular wind. Our analysis of these high-resolution observations excludes the possibility of a starburst-driven wind, a mechanically or energy driven active galactic nucleus wind, and exposes a molecular MDH wind. These results imply that the nuclear evolution of galaxies and the growth of SMBHs are similar to the growth of hot cores or protostars where gravitational collapse of the nuclear torus drives a MHD wind. These results mean galaxies are capable, in part, of regulating the evolution of their nuclei without feedback.
  •  
4.
  • Nishimura, Y., et al. (författare)
  • CON-quest: II. Spatially and spectrally resolved HCN/HCO + line ratios in local luminous and ultraluminous infrared galaxies
  • 2024
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 686
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Nuclear regions of ultraluminous and luminous infrared galaxies (U/LIRGs) are powered by starbursts and/or active galactic nuclei (AGNs). These regions are often obscured by extremely high columns of gas and dust. Molecular lines in the submillimeter windows have the potential to determine the physical conditions of these compact obscured nuclei (CONs). Aims. We aim to reveal the distributions of HCN and HCO+ emission in local U/LIRGs and investigate whether and how they are related to galaxy properties. Methods. Using the Atacama Large Millimeter/submillimeter Array (ALMA), we have conducted sensitive observations of the HCN J = 3-2 and HCO+J = 3-2 lines toward 23 U/LIRGs in the local Universe (z < 0.07) with a spatial resolution of ~0.3″ ( ~50-400 pc). Results. We detected both HCN and HCO+ in 21 galaxies, only HCN in one galaxy, and neither in one galaxy. The global HCN/HCO+ line ratios, averaged over scales of ~0.5-4 kpc, range from 0.4 to 2.3, with an unweighted mean of 1.1. These line ratios appear to have no systematic trend with bolometric AGN luminosity or star formation rate. The line ratio varies with position and velocity within each galaxy, with an average interquartile range of 0.38 on a spaxel-by-spaxel basis. In eight out of ten galaxies known to have outflows and/or inflows, we found spatially and kinematically symmetric structures of high line ratios. These structures appear as a collimated bicone in two galaxies and as a thin spherical shell in six galaxies. Conclusions. Non-LTE analysis suggests that the high HCN/HCO+ line ratio in outflows is predominantly influenced by the abundance ratio. Chemical model calculations indicate that the enhancement of HCN abundance in outflows is likely due to high-temperature chemistry triggered by shock heating. These results imply that the HCN/HCO+ line ratio can aid in identifying the outflow geometry when the shock velocity of the outflows is sufficiently high to heat the gas.
  •  
5.
  • Aalto, Susanne, 1964, et al. (författare)
  • The hidden heart of the luminous infrared galaxy IC 860: I. A molecular inflow feeding opaque, extreme nuclear activity
  • 2019
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 627
  • Tidskriftsartikel (refereegranskat)abstract
    • High-resolution (0.'03-0.'09 (9-26 pc)) ALMA (100-350 GHz (λ3 to 0.8 mm)) and (0.'04 (11 pc)) VLA 45 GHz measurements have been used to image continuum and spectral line emission from the inner (100 pc) region of the nearby infrared luminous galaxy IC 860. We detect compact (r ∼ 10 pc), luminous, 3 to 0.8 mm continuum emission in the core of IC 860, with brightness temperatures TB > 160 K. The 45 GHz continuum is equally compact but significantly fainter in flux. We suggest that the 3 to 0.8 mm continuum emerges from hot dust with radius r ∼ 8 pc and temperature Td ∼ 280 K, and that it is opaque at millimetre wavelengths, implying a very large H2 column density N(H2)≥ 1026 cm-2. Vibrationally excited lines of HCN v2 = 1f J = 4 - 3 and 3-2 (HCN-VIB) are seen in emission and spatially resolved on scales of 40-50 pc. The line-to-continuum ratio drops towards the inner r = 4 pc, resulting in a ring-like morphology. This may be due to high opacities and matching HCN-VIB excitation- and continuum temperatures. The HCN-VIB emission reveals a north-south nuclear velocity gradient with projected rotation velocities of v = 100 km s-1 at r = 10 pc. The brightest emission is oriented perpendicular to the velocity gradient, with a peak HCN-VIB 3-2 TB of 115 K (above the continuum). Vibrational ground-state lines of HCN 3-2 and 4-3, HC15N 4-3, HCO+ 3-2 and 4-3, and CS 7-6 show complex line absorption and emission features towards the dusty nucleus. Redshifted, reversed P-Cygni profiles are seen for HCN and HCO+ consistent with gas inflow with vin ≤ 50 km s-1. Foreground absorption structures outline the flow, and can be traced from the north-east into the nucleus. In contrast, CS 7-6 has blueshifted line profiles with line wings extending out to -180 km s-1. We suggest that a dense and slow outflow is hidden behind a foreground layer of obscuring, inflowing gas. The centre of IC 860 is in a phase of rapid evolution where an inflow is building up a massive nuclear column density of gas and dust that feeds star formation and/or AGN activity. The slow, dense outflow may be signaling the onset of feedback. The inner, r = 10 pc, IR luminosity may be powered by an AGN or a compact starburst, which then would likely require a top-heavy initial mass function.
  •  
6.
  • Falstad, Niklas, 1987, et al. (författare)
  • CON-quest: Searching for the most obscured galaxy nuclei
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 649
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Some luminous and ultraluminous infrared galaxies (LIRGs and ULIRGs) host extremely compact (r < 100 pc) and dusty nuclei. The high extinction associated with large column densities of gas and dust toward these objects render them hard to detect at many wavelengths. The intense infrared radiation arising from warm dust in these sources can provide a significant fraction of the bolometric luminosity of the galaxy and is prone to excite vibrational levels of molecules such as HCN. This results in emission from the rotational transitions of vibrationally excited HCN (HCN-vib); the brightest emission is found in compact obscured nuclei (CONs; ςHCN-vib > 1 L⊙ pc-2 in the J = 3-2 transition). However, there have been no systematic searches for CONs, and it is unknown how common they are. Aims. We aim to establish how common CONs are in the local Universe (z < 0.08), and whether their prevalence depends on the luminosity or other properties of the host galaxy. Methods. We conducted an Atacama Large Millimeter/submillimeter Array survey of the rotational J = 3-2 transition of HCN-vib in a volume-limited sample of 46 far-infrared luminous galaxies. Results. Compact obscured nuclei are identified in 38-13+18% of the ULIRGs, 21-6+12% of the LIRGs, and 0-0+9% of the lower luminosity galaxies. We find no dependence on the inclination of the host galaxy, but strong evidence of lower IRAS 25 μm to 60 μm flux density ratios (f25/f60) in CONs (with the exception of one galaxy, NGC 4418) compared to the rest of the sample. Furthermore, we find that CONs have stronger silicate features (s9.7 μm), but similar polycyclic aromatic hydrocarbon equivalent widths (EQW6.2 μm) compared to other galaxies. Along with signatures of molecular inflows seen in the far-infrared in most CONs, submillimeter observations also reveal compact, often collimated, outflows. Conclusions. In the local Universe, CONs are primarily found in (U)LIRGs, in which they are remarkably common. As such systems are often highly disturbed, inclinations are difficult to estimate, and high-resolution continuum observations of the individual nuclei are required to determine if the CON phenomenon is related to the inclinations of the nuclear disks. Further studies of the in- A nd outflow properties of CONs should also be conducted to investigate how these are connected to each other and to the CON phenomenon. The lower f25/f60 ratios in CONs as well as the results for the mid-infrared diagnostics investigated (EQW6.2 μm and s9.7 μm) are consistent with the notion that large dust columns gradually shift the radiation from the hot nucleus to longer wavelengths, making the mid- A nd far-infrared "photospheres"significantly cooler than the interior regions. Finally, to assess the importance of CONs in the context of galaxy evolution, it is necessary to extend this study to higher redshifts where (U)LIRGs are more common.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy