SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Costado M. T.) ;pers:(Bayo A.)"

Sökning: WFRF:(Costado M. T.) > Bayo A.

  • Resultat 1-10 av 27
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Smiljanic, R., et al. (författare)
  • The Gaia-ESO Survey: The analysis of high-resolution UVES spectra of FGK-type stars
  • 2014
  • Ingår i: Astronomy & Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 570
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The ongoing Gaia-ESO Public Spectroscopic Survey is using FLAMES at the VLT to obtain high-quality medium-resolution Giraffe spectra for about 10(5) stars and high-resolution UVES spectra for about 5000 stars. With UVES, the Survey has already observed 1447 FGK-type stars. Aims. These UVES spectra are analyzed in parallel by several state-of-the-art methodologies. Our aim is to present how these analyses were implemented, to discuss their results, and to describe how a final recommended parameter scale is defined. We also discuss the precision (method-to-method dispersion) and accuracy (biases with respect to the reference values) of the final parameters. These results are part of the Gaia-ESO second internal release and will be part of its first public release of advanced data products. Methods. The final parameter scale is tied to the scale defined by the Gaia benchmark stars, a set of stars with fundamental atmospheric parameters. In addition, a set of open and globular clusters is used to evaluate the physical soundness of the results. Each of the implemented methodologies is judged against the benchmark stars to define weights in three different regions of the parameter space. The final recommended results are the weighted medians of those from the individual methods. Results. The recommended results successfully reproduce the atmospheric parameters of the benchmark stars and the expected T-eff-log g relation of the calibrating clusters. Atmospheric parameters and abundances have been determined for 1301 FGK-type stars observed with UVES. The median of the method-to-method dispersion of the atmospheric parameters is 55K for T-eff, 0.13dex for log g and 0.07 dex for [Fe/H]. Systematic biases are estimated to be between 50-100 K for T-eff, 0.10-0.25 dex for log g and 0.05-0.10 dex for [Fe/H]. Abundances for 24 elements were derived: C, N, O, Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Mo, Ba, Nd, and Eu. The typical method-to-method dispersion of the abundances varies between 0.10 and 0.20 dex. Conclusions. The Gaia-ESO sample of high-resolution spectra of FGK-type stars will be among the largest of its kind analyzed in a homogeneous way. The extensive list of elemental abundances derived in these stars will enable significant advances in the areas of stellar evolution and Milky Way formation and evolution.
  •  
2.
  • Lanzafame, A. C., et al. (författare)
  • Gaia-ESO Survey: Analysis of pre-main sequence stellar spectra
  • 2015
  • Ingår i: Astronomy & Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 576
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The Gaia-ESO Public Spectroscopic Survey is obtaining high-quality spectroscopy of some 100 000 Milky Way stars using the FLAMES spectrograph at the VLT, down to V = 19 mag, systematically covering all the main components of the Milky Way and providing the first homogeneous overview of the distributions of kinematics and chemical element abundances in the Galaxy. Observations of young open clusters, in particular, are giving new insights into their initial structure, kinematics, and their subsequent evolution. Aims. This paper describes the analysis of UVES and GIRAFFE spectra acquired in the fields of young clusters whose population includes pre-main sequence (PMS) stars. The analysis is applied to all stars in such fields, regardless of any prior information on membership, and provides fundamental stellar atmospheric parameters, elemental abundances, and PMS-specific parameters such as veiling, accretion, and chromospheric activity. Methods. When feasible,different methods were used to derive raw parameters (e. g. line equivalent widths) fundamental atmospheric parameters and derived parameters (e. g. abundances). To derive some of these parameters, we used methods that have been extensively used in the past and new ones developed in the context of the Gaia-ESO survey enterprise. The internal precision of these quantities was estimated by inter-comparing the results obtained by these different methods, while the accuracy was estimated by comparison with independent external data, such as effective temperature and surface gravity derived from angular diameter measurements, on a sample of benchmarks stars. A validation procedure based on these comparisons was applied to discard spurious or doubtful results and produce recommended parameters. Specific strategies were implemented to resolve problems of fast rotation, accretion signatures, chromospheric activity, and veiling. Results. The analysis carried out on spectra acquired in young cluster fields during the first 18 months of observations, up to June 2013, is presented in preparation of the first release of advanced data products. These include targets in the fields of the rho Oph, Cha I, NGC2264, gamma Vel, and NGC 2547 clusters. Stellar parameters obtained with the higher resolution and larger wavelength coverage from UVES are reproduced with comparable accuracy and precision using the smaller wavelength range and lower resolution of the GIRAFFE setup adopted for young stars, which allows us to provide stellar parameters with confidence for the much larger GIRAFFE sample. Precisions are estimated to be approximate to 120 K rms in T-eff, approximate to 0.3 dex rms in log g, and approximate to 0.15 dex rms in [Fe/H] for the UVES and GIRAFFE setups.
  •  
3.
  • Jackson, R. J., et al. (författare)
  • The Gaia-ESO Survey: Empirical determination of the precision of stellar radial velocities and projected rotation velocities
  • 2015
  • Ingår i: Astronomy & Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 580
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The Gaia-ESO Survey (GES) is a large public spectroscopic survey at the European Southern Observatory Very Large Telescope. Aims. A key aim is to provide precise radial velocities (RVs) and projected equatorial velocities (v sin i) for representative samples of Galactic stars, which will complement information obtained by the Gaia astrometry satellite. Methods. We present an analysis to empirically quantify the size and distribution of uncertainties in RV and v sin i using spectra from repeated exposures of the same stars. Results. We show that the uncertainties vary as simple scaling functions of signal-to-noise ratio (S/N) and v sin i, that the uncertainties become larger with increasing photospheric temperature, but that the dependence on stellar gravity, metallicity and age is weak. The underlying uncertainty distributions have extended tails that are better represented by Student's t-distributions than by normal distributions. Conclusions. Parametrised results are provided, which enable estimates of the RV precision for almost all GES measurements, and estimates of the v sin i precision for stars in young clusters, as a function of S/N, v sin i and stellar temperature. The precision of individual high S/N GES RV measurements is 0.22-0.26 km s(-1), dependent on instrumental configuration.
  •  
4.
  • Pancino, E., et al. (författare)
  • The Gaia-ESO Survey : Calibration strategy
  • 2017
  • Ingår i: Astronomy and Astrophysics. - : EDP SCIENCES S A. - 0004-6361 .- 1432-0746. ; 598
  • Tidskriftsartikel (refereegranskat)abstract
    • The Gaia-ESO survey (GES) is now in its fifth and last year of observations and has produced tens of thousands of high-quality spectra of stars in all Milky Way components. This paper presents the strategy behind the selection of astrophysical calibration targets, ensuring that all GES results on radial velocities, atmospheric parameters, and chemical abundance ratios will be both internally consistent and easily comparable with other literature results, especially from other large spectroscopic surveys and from Gaia. The calibration of GES is particularly delicate because of (i) the large space of parameters covered by its targets, ranging from dwarfs to giants, from O to M stars; these targets have a large wide of metallicities and also include fast rotators, emission line objects, and stars affected by veiling; (ii) the variety of observing setups, with different wavelength ranges and resolution; and (iii) the choice of analyzing the data with many different state-of-the-art methods, each stronger in a different region of the parameter space, which ensures a better understanding of systematic uncertainties. An overview of the GES calibration and homogenization strategy is also given, along with some examples of the usage and results of calibrators in GES iDR4, which is the fourth internal GES data release and will form the basis of the next GES public data release. The agreement between GES iDR4 recommended values and reference values for the calibrating objects are very satisfactory. The average off sets and spreads are generally compatible with the GES measurement errors, which in iDR4 data already meet the requirements set by the main GES scientific goals.
  •  
5.
  • Bragaglia, A., et al. (författare)
  • The Gaia-ESO Survey : Target selection of open cluster stars & x22c6
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 659
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The Gaia-ESO Survey (GES) is a public, high-resolution spectroscopic survey, conducted with the multi-object spectrograph Fibre Large Array Multi Element Spectrograph (FLAMES) on the Very Large Telescope (European Southern Observatory, ESO, Cerro Paranal, Chile) from December 2011 to January 2018. Gaia-ESO has targeted all the main stellar components of the Milky Way, including thin and thick disc, bulge, and halo. In particular, a large sample of open clusters has been observed, from very young ones, just out of the embedded phase, to very old ones. Aims. The different kinds of clusters and stars targeted in them are useful to reach the main science goals of the open cluster part of GES, which are the study of the open cluster structure and dynamics, the use of open clusters to constrain and improve stellar evolution models, and the definition of Galactic disc properties (e.g., metallicity distribution). Methods. The Gaia-ESO Survey is organised in 19 working groups (WGs), each one being responsible for a task. We describe here the work of three of them, one in charge of the selection of the targets within each cluster or association (WG4), one responsible for defining the most probable candidate member stars (WG1), and another one in charge of the preparation of the observations (WG6). As the entire GES has been conducted before the second Gaia data release, we could not make use of the Gaia astrometry to define cluster member candidates. We made use of public and private photometry to select the stars to be observed with FLAMES, once brought on a common astrometric system (the one defined by 2MASS). Candidate target selection was based on ground-based proper motions, radial velocities, and X-ray properties when appropriate, for example, and it was mostly used to define the position of the clusters' evolutionary sequences in the colour-magnitude diagrams. Targets for GIRAFFE were then selected near the sequences in an unbiased way. We used known information on membership, when available, only for the few stars to be observed with UVES. Results. We collected spectra for 62 confirmed clusters in the main observing campaign (and a few more clusters were taken from the ESO archive). Among them are very young clusters, where the main targets are pre-main sequence stars, clusters with very hot and massive stars currently on the main sequence, intermediate-age and old clusters where evolved stars are the main targets. Our strategy of making the selection of targets as inclusive and unbiased as possible and of observing a significant and representative fraction of all possible targets permitted us to collect the largest, most accurate, and most homogeneous spectroscopic data set on open star clusters ever achieved.
  •  
6.
  • Magrini, L., et al. (författare)
  • The Gaia -ESO Survey : radial distribution of abundances in the Galactic disc from open clusters and young-field stars
  • 2017
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 603
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The spatial distribution of elemental abundances in the disc of our Galaxy gives insights both on its assembly process and subsequent evolution, and on the stellar nucleogenesis of the different elements. Gradients can be traced using several types of objects as, for instance, (young and old) stars, open clusters, HII regions, planetary nebulae. Aims. We aim to trace the radial distributions of abundances of elements produced through different nucleosynthetic channels - the α-elements O, Mg, Si, Ca and Ti, and the iron-peak elements Fe, Cr, Ni and Sc - by use of the Gaia-ESO IDR4 results for open clusters and young-field stars. Methods. From the UVES spectra of member stars, we have determined the average composition of clusters with ages > 0.1 Gyr. We derived statistical ages and distances of field stars. We traced the abundance gradients using the cluster and field populations and compared them with a chemo-dynamical Galactic evolutionary model. Results. The adopted chemo-dynamical model, with the new generation of metallicity-dependent stellar yields for massive stars, is able to reproduce the observed spatial distributions of abundance ratios, in particular the abundance ratios of [O/Fe] and [Mg/Fe] in the inner disc (5 kpc
  •  
7.
  • Rojas-Arriagada, A., et al. (författare)
  • The Gaia-ESO Survey : Exploring the complex nature and origins of the Galactic bulge populations
  • 2017
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 601
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. As observational evidence steadily accumulates, the nature of the Galactic bulge has proven to be rather complex: the structural, kinematic, and chemical analyses often lead to contradictory conclusions. The nature of the metal-rich bulge-and especially of the metal-poor bulge and their relation with other Galactic components, still need to be firmly defined on the basis of statistically significant high-quality data samples. Aims. We used the fourth internal data release of the Gaia-ESO survey to characterize the bulge metallicity distribution function (MDF), magnesium abundance, spatial distribution, and correlation of these properties with kinematics. Moreover, the homogeneous sampling of the different Galactic populations provided by the Gaia-ESO survey allowed us to perform a comparison between the bulge, thin disk, and thick disk sequences in the [Mg /Fe] vs. [Fe/H] plane in order to constrain the extent of their eventual chemical similarities. Methods. We obtained spectroscopic data for similar to 2500 red clump stars in 11 bulge fields, sampling the area -10 degrees <= l <= + 8 degrees and -10 degrees <= b <= -4 degrees from the fourth internal data release of the Gaia-ESO survey. A sample of similar to 6300 disk stars was also selected for comparison. Spectrophotometric distances computed via isochrone fitting allowed us to define a sample of stars likely located in the bulge region. Results. From a Gaussian mixture models (GMM) analysis, the bulge MDF is confirmed to be bimodal across the whole sampled area. The relative ratio between the two modes of the MDF changes as a function of b, with metal-poor stars dominating at high latitudes. The metal-rich stars exhibit bar-like kinematics and display a bimodality in their magnitude distribution, a feature which is tightly associated with the X-shape bulge. They overlap with the metal-rich end of the thin disk sequence in the [Mg/Fe] vs. [Fe/H] plane. On the other hand, metal-poor bulge stars have a more isotropic hot kinematics and do not participate in the X-shape bulge. Their Mg enhancement level and general shape in the [Mg/Fe] vs. [Fe/H] plane is comparable to that of the thick disk sequence. The position at which [Mg/Fe] starts to decrease with [Fe/H], called the "knee", is observed in the metal-poor bulge at [Fe/H] knee = -0.37 +/- 0.09, being 0.06 dex higher than that of the thick disk. Although this difference is inside the error bars, it suggest a higher star formation rate (SFR) for the bulge than for the thick disk. We estimate an upper limit for this difference of Delta [Fe/H](knee) = 0 : 24 dex. Finally, we present a chemical evolution model that suitably fits the whole bulge sequence by assuming a fast (< 1 Gyr) intense burst of stellar formation that takes place at early epochs. Conclusions. We associate metal-rich stars with the bar boxy/peanut bulge formed as the product of secular evolution of the early thin disk. On the other hand, the metal-poor subpopulation might be the product of an early prompt dissipative collapse dominated by massive stars. Nevertheless, our results do not allow us to firmly rule out the possibility that these stars come from the secular evolution of the early thick disk. This is the first time that an analysis of the bulge MDF and alpha-abundances has been performed in a large area on the basis of a homogeneous, fully spectroscopic analysis of high-resolution, high S/N data.
  •  
8.
  • Smiljanic, R., et al. (författare)
  • The Gaia-ESO Survey : Sodium and aluminium abundances in giants and dwarfs Implications for stellar and Galactic chemical evolution
  • 2016
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 589
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Stellar evolution models predict that internal mixing should cause some sodium overabundance at the surface of red giants more massive than similar to 1.5-2.0 M-circle dot. The surface aluminium abundance should not be affected. Nevertheless, observational results disagree about the presence and/or the degree of Na and Al overabundances. In addition, Galactic chemical evolution models adopting different stellar yields lead to very different predictions for the behavior of [Na/Fe] and [Al/Fe] versus [Fe/H]. Overall, the observed trends of these abundances with metallicity are not well reproduced.Aims. We readdress both issues, using new Na and Al abundances determined within the Gaia-ESO Survey. Our aim is to obtain better observational constraints on the behavior of these elements using two samples: i) more than 600 dwarfs of the solar neighborhood and of open clusters and ii) low-and intermediate-mass clump giants in six open clusters.Methods. Abundances were determined using high-resolution UVES spectra. The individual Na abundances were corrected for nonlocal thermodynamic equilibrium effects. For the Al abundances, the order of magnitude of the corrections was estimated for a few representative cases. For giants, the abundance trends with stellar mass are compared to stellar evolution models. For dwarfs, the abundance trends with metallicity and age are compared to detailed chemical evolution models.Results. Abundances of Na in stars with mass below similar to 2.0 M-circle dot, and of Al in stars below similar to 3.0 M-circle dot, seem to be unaffected by internal mixing processes. For more massive stars, the Na overabundance increases with stellar mass. This trend agrees well with predictions of stellar evolutionary models. For Al, our only cluster with giants more massive than 3.0 M-circle dot, NGC 6705, is Al enriched. However, this might be related to the environment where the cluster was formed. Chemical evolution models that well fit the observed [Na/Fe] vs. [Fe/H] trend in solar neighborhood dwarfs cannot simultaneously explain the run of [Al/Fe] with [Fe/H], and vice versa. The comparison with stellar ages is hampered by severe uncertainties. Indeed, reliable age estimates are available for only a half of the stars of the sample. We conclude that Al is underproduced by the models, except for stellar ages younger than about 7 Gyr. In addition, some significant source of late Na production seems to be missing in the models. Either current Na and Al yields are affected by large uncertainties, and/or some important Galactic source(s) of these elements has as yet not been taken into account.
  •  
9.
  • Smiljanic, R., et al. (författare)
  • The Gaia-ESO Survey : properties of newly discovered Li-rich giants
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 617
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. We report 20 new lithium-rich giants discovered within the Gaia-ESO Survey, including the first Li-rich giant with an evolutionary stage confirmed by CoRoT (Convection, Rotation and planetary Transits) data. We present a detailed overview of the properties of these 20 stars. Methods. Atmospheric parameters and abundances were derived in model atmosphere analyses using medium-resolution GIRAFFE or high-resolution UVES (Ultraviolet and Visual Echelle Spectrograph) spectra. These results are part of the fifth internal data release of the Gaia-ESO Survey. The Li abundances were corrected for non-local thermodynamical equilibrium effects. Other stellar properties were investigated for additional peculiarities (the core of strong lines for signs of magnetic activity, infrared magnitudes, rotational velocities, chemical abundances, and Galactic velocities). We used Gaia DR2 parallaxes to estimate distances and luminosities. Results. The giants have A(Li) > 2.2 dex. The majority of them (14 of 20 stars) are in the CoRoT fields. Four giants are located in the field of three open clusters, but are not members. Two giants were observed in fields towards the Galactic bulge, but likely lie in the inner disc. One of the bulge field giants is super Li-rich with A(Li) = 4.0 dex. Conclusions. We identified one giant with infrared excess at 22 mu m. Two other giants, with large v sin i, might be Li-rich because of planet engulfment. Another giant is found to be barium enhanced and thus could have accreted material from a former asymptotic giant branch companion. Otherwise, in addition to the Li enrichment, the evolutionary stages are the only other connection between these new Li-rich giants. The CoRoT data confirm that one Li-rich giant is at the core-He burning stage. The other giants are concentrated in close proximity to the red giant branch luminosity bump, the core-He burning stages, or the early-asymptotic giant branch. This is very clear from the Gaia-based luminosities of the Li-rich giants. This is also seen when the CoRoT Li-rich giants are compared to a larger sample of 2252 giants observed in the CoRoT fields by the Gaia-ESO Survey, which are distributed throughout the red giant branch in the T-eff-log g diagram. These observations show that the evolutionary stage is a major factor for the Li enrichment in giants. Other processes, such as planet accretion, contribute at a smaller scale.
  •  
10.
  • Bouvier, J., et al. (författare)
  • The Gaia-ESO Survey: A lithium-rotation connection at 5 Myr?
  • 2016
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 590
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The evolution of lithium abundance in cool dwarfs provides a unique probe of nonstandard processes in stellar evolution. Aims. We investigate the lithium content of young low-mass stars in the 5 Myr old, star forming region NGC 2264 and its relationship with rotation. Methods. We combine lithium equivalent width measurements (EW(Li)) from the Gaia-ESO Survey with the determination of rotational periods from the CSI 2264 survey. We only consider bona fide nonaccreting cluster members to minimize the uncertainties on EW(Li). Results. We report the existence of a relationship between lithium content and rotation in NGC 2264 at an age of 5 Myr. The Li-rotation connection is seen over a restricted temperature range (Teff = 3800-4400 K), where fast rotators are Li-rich compared to slow rotators. This correlation is similar to, albeit of lower amplitude than, the Li-rotation connection previously reported for K dwarfs in the 125 Myr old Pleiades cluster. We investigate whether the nonstandard pre-main-sequence models developed so far to explain the Pleiades results, which are based on episodic accretion, pre-main-sequence, core-envelope decoupling, and/or radius inflation due to enhanced magnetic activity, can account for early development of the Li-rotation connection. While radius inflation appears to be the most promising possibility, each of these models has issues. We therefore also discuss external causes that might operate during the first few Myr of pre-main-sequence evolution, such as planet engulfment and/or steady disk accretion, as possible candidates for the common origin for Li excess and fast rotation in young low-mass pre-main-sequence stars. Conclusions. The emergence of a connection between lithium content and rotation rate at such an early age as 5 Myr suggests a complex link between accretion processes, early angular momentum evolution, and possibly planet formation, which likely impacts early stellar evolution and has yet to be fully deciphered.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 27

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy