SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Costagliola Francesco 1981) ;pers:(Gonzalez Alfonso E.)"

Sökning: WFRF:(Costagliola Francesco 1981) > Gonzalez Alfonso E.

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aalto, Susanne, 1964, et al. (författare)
  • High resolution observations of HCN and HCO+J = 3–2 in the disk and outflow of Mrk 231 -- Detection of vibrationally excited HCN in the warped nucleus
  • 2015
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 574, s. 85-
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. Our goal is to study molecular gas properties in nuclei and large scale outflows/winds from active galactic nuclei (AGNs) and starburst galaxies.Methods. We obtained high resolution (0.̋25 to 0.̋90) observations of HCN and HCO+J = 3 → 2 of the ultraluminous QSO galaxy Mrk 231 with the IRAM Plateau de Bure Interferometer (PdBI).Results. We find luminous HCN and HCO+J = 3 → 2 emission in the main disk and we detect compact (r ≲ 0''̣1 (90 pc)) vibrationally excited HCN J = 3 → 2ν2 = 1f emission centred on the nucleus. The velocity field of the vibrationally excited HCN is strongly inclined (position angle PA = 155°) compared to the east-west rotation of the main disk. The nuclear (r ≲ 0.̋1) molecular mass is estimated to 8 × 108 M⊙ with an average N(H2) of 1.2 × 1024 cm-2. Prominent, spatially extended (≳350 pc) line wings are found for HCN J = 3 → 2 with velocities up to ± 750 km s-1. Line ratios indicate that the emission is emerging in dense gas n = 104−5 × 105 cm-3 of elevated HCN abundance X(HCN) = 10-8−10-6. The highest X(HCN) also allows for the emission to originate in gas of more moderate density. We tentatively detect nuclear emission from the reactive ion HOC+ with HCO+/HOC+ = 10−20.Conclusions. The HCN ν2 = 1f line emission is consistent with the notion of a hot, dusty, warped inner disk of Mrk 231 where the ν2 = 1f line is excited by bright mid-IR 14 μm continuum. We estimate the vibrational temperature Tvib to 200−400 K. Based on relative source sizes we propose that 50% of the main HCN emission may have its excitation affected by the radiation field through IR pumping of the vibrational ground state. The HCN emission in the line wings, however, is more extended and thus likely not strongly affected by IR pumping. Our results reveal that dense clouds survive (and/or are formed) in the AGN outflow on scales of at least several hundred pc before evaporating or collapsing. The elevated HCN abundance in the outflow is consistent with warm chemistry possibly related to shocks and/or X-ray irradiated gas. An upper limit to the mass and momentum flux is 4 × 108 M⊙ and 12LAGN/c, respectively, and we discuss possible driving mechanisms for the dense outflow.
  •  
2.
  • Aalto, Susanne, 1964, et al. (författare)
  • Probing highly obscured, self-absorbed galaxy nuclei with vibrationally excited HCN
  • 2015
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 584
  • Tidskriftsartikel (refereegranskat)abstract
    • We present high resolution (0.'' 4) IRAM PdBI and ALMA mm and submm observations of the (ultra) luminous infrared galaxies ((U)LIRGs) IRAS 17208-0014, Arp220, IC 860 and Zw049.057 that reveal intense line emission from vibrationally excited (nu(2) = 1) J = 3-2 and 4-3 HCN. The emission is emerging from buried, compact (r 5 x 10(13) L-circle dot kpc(-2). These nuclei are likely powered by accreting supermassive black holes (SMBHs) and/or hot (>200 K) extreme starbursts. Vibrational, nu(2) = 1, lines of HCN are excited by intense 14 mu m mid-infrared emission and are excellent probes of the dynamics, masses, and physical conditions of (U)LIRG nuclei when H-2 column densities exceed 10(24) cm(-2). It is clear that these lines open up a new interesting avenue to gain access to the most obscured AGNs and starbursts. Vibrationally excited HCN acts as a proxy for the absorbed mid-infrared emission from the embedded nuclei, which allows for reconstruction of the intrinsic, hotter dust SED. In contrast, we show strong evidence that the ground vibrational state (. = 0), J = 3-2 and 4-3 rotational lines of HCN and HCO+ fail to probe the highly enshrouded, compact nuclear regions owing to strong self-and continuum absorption. The HCN and HCO+ line profiles are double-peaked because of the absorption and show evidence of non-circular motions-possibly in the form of in-or outflows. Detections of vibrationally excited HCN in external galaxies are so far limited to ULIRGs and early-type spiral LIRGs, and we discuss possible causes for this. We tentatively suggest that the peak of vibrationally excited HCN emission is connected to a rapid stage of nuclear growth, before the phase of strong feedback.
  •  
3.
  • Aladro, Rebeca, 1979, et al. (författare)
  • Molecular gas in the northern nucleus of Mrk 273: Physical and chemical properties of the disc and its outflow
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 617
  • Tidskriftsartikel (refereegranskat)abstract
    • Aiming to characterise the properties of the molecular gas in the ultra-luminous infrared galaxy Mrk 273 and its outflow, we used the NOEMA interferometer to image the dense-gas molecular tracers HCN, HCO+, HNC, HOC+ and HC3N at similar to 86 GHz and similar to 256 GHz with angular resolutions of 4.'' 9 x 4.'' 5 (similar to 3.7 x 3.4 kpc) and 0.'' 61 x 0.'' 55 (similar to 460 x 420 pc). We also modelled the flux of several H2O lines observed with Herschel using a radiative transfer code that includes excitation by collisions and far-infrared photons. The disc of the Mrk 273 north nucleus has two components with decoupled kinematics. The gas in the outer parts (R similar to 1.5 kpc) rotates with a south-east to north-west direction, while in the inner disc (R similar to 300 pc) follows a north-east to south-west rotation. The central 300 pc, which hosts a compact starburst region, is filled with dense and warm gas, and contains a dynamical mass of (4-5) x 10(9) M-circle dot, a luminosity of L'HCN = (3-4) x 10(8) K km s(-1) pc(2), and a dust temperature of 55 K. At the very centre, a compact core with R similar to 50 pc has a luminosity of LIR = 4 x 10(11) L-circle dot (30% of the total infrared luminosity), and a dust temperature of 95 K. The core is expanding at low velocities similar to 50-100 km s(-1), probably affected by the outflowing gas. We detect the blue-shifted component of the outflow, while the red-shifted counterpart remains undetected in our data. Its cold and dense phase reaches fast velocities up to similar to 1000 km s(-1), while the warm outflowing gas has more moderate maximum velocities of similar to 600 km s(-1). The outflow is compact, being detected as far as 460 pc from the centre in the northern direction, and has a mass of dense gas <= 8 x 10(8) M-circle dot. The difference between the position angles of the inner disc (similar to 70 degrees) and the outflow (similar to 10 degrees) indicates that the outflow is likely powered by the AGN, and not by the starburst. Regarding the chemistry in Mrk 273, we measure an extremely low HCO+/HOC+ ratio of 10 +/- 5 in the inner disc of Mrk 273.
  •  
4.
  • Falstad, Niklas, 1987, et al. (författare)
  • Hidden molecular outflow in the LIRG Zw 049.057
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 609
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Feedback in the form of mass outflows driven by star formation or active galactic nuclei is a key component of galaxy evolution. The luminous infrared galaxy Zw 049.057 harbours a compact obscured nucleus with a possible far-infrared signature of outflowing molecular gas. Due to the high optical depths at far-infrared wavelengths, however, the interpretation of the outflow signature is uncertain. At millimeter and radio wavelengths, the radiation is better able to penetrate the large columns of gas and dust responsible for the obscuration. Aims. We aim to investigate the molecular gas distribution and kinematics in the nucleus of Zw 049.057 in order to confirm and locate the molecular outflow, with the ultimate goal to understand how the nuclear activity affects the host galaxy. Methods. We used high angular resolution observations from the Submillimeter Array (SMA), the Atacama Large Millimeter/submillimeter Array (ALMA), and the Karl G. Jansky Very Large Array (VLA) to image the CO J = 2-1 and J = 6-5 emission, the 690 GHz continuum, the radio centimeter continuum, and absorptions by rotationally excited OH. Results. The CO line profiles exhibit wings extending ~ 300 km s -1 beyond the systemic velocity. At centimeter wavelengths, we find a compact (~ 40 pc) continuum component in the nucleus, with weaker emission extending several 100 pc approximately along the major and minor axes of the galaxy. In the OH absorption lines toward the compact continuum, wings extending to a similar velocity as for the CO are only seen on the blue side of the profile. The weak centimeter continuum emission along the minor axis is aligned with a highly collimated, jet-like dust feature previously seen in near-infrared images of the galaxy. Comparison of the apparent optical depths in the OH lines indicate that the excitation conditions in Zw 049.057 differ from those within other OH megamaser galaxies. Conclusions. We interpret the wings in the spectral lines as signatures of a nuclear molecular outflow. A relation between this outflow and the minor axis radio feature is possible, although further studies are required to investigate this possible association and understand the connection between the outflow and the nuclear activity. Finally, we suggest that the differing OH excitation conditions are further evidence that Zw 049.057 is in a transition phase between megamaser and kilomaser activity.
  •  
5.
  • Lindberg, Johan, 1984, et al. (författare)
  • Evidence for a chemically differentiated outflow in Mrk 231
  • 2016
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 587
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. Our goal is to study the chemical composition of the outflows of active galactic nuclei and starburst galaxies. Methods. We obtained high-resolution interferometric observations of HCN and HCO+ J = 1 -> 0 and J = 2 -> 1 of the ultraluminous infrared galaxy Mrk 231 with the IRAM Plateau de Bure Interferometer. We also use previously published observations of HCN and HCO+ J = 1 -> 0 and J = 3 -> 2, and HNC J = 1 -> 0 in the same source. Results. In the line wings of the HCN, HCO+, and HNC emission, we find that these three molecular species exhibit features at distinct velocities which differ between the species. The features are not consistent with emission lines of other molecular species. Through radiative transfer modelling of the HCN and HCO+ outflow emission we find an average abundance ratio X(HCN) = X(HCO+) greater than or similar to 1000. Assuming a clumpy outflow, modelling of the HCN and HCO+ emission produces strongly inconsistent outflow masses. Conclusions. Both the anti-correlated outflow features of HCN and HCO+ and the different outflow masses calculated from the radiative transfer models of the HCN and HCO+ emission suggest that the outflow is chemically differentiated. The separation between HCN and HCO+ could be an indicator of shock fronts present in the outflow, since the HCN/HCO+ ratio is expected to be elevated in shocked regions. Our result shows that studies of the chemistry in large-scale galactic outflows can be used to better understand the physical properties of these outflows and their effects on the interstellar medium in the galaxy.
  •  
6.
  • Martin, S., et al. (författare)
  • The unbearable opaqueness of Arp220
  • 2016
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 590, s. Art. no. 25-
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The origin of the enormous luminosities of the two opaque nuclei of Arp 220, the prototypical ultra-luminous infrared galaxy, remains a mystery because we lack observational tools to explore the innermost regions around the nuclei. Aims. We explore the potential of imaging vibrationally excited molecular emission at high angular resolution to better understand the morphology and physical structure of the dense gas in Arp 220 and to gain insight into the nature of the nuclear powering sources. Methods. The Atacama Large Millimeter/submillimeter Array (ALMA) provided simultaneous observations of HCN, HCO+, and vibrationally excited HCN v2 = 1f emission. Their J = 4-3 and 3-2 transitions were observed at a matching resolution of ~0.5??, which allows us to isolate the emission from the two nuclei. Results. The HCN and HCO+ lines within the ground-vibrational state poorly describe the central ~100 pc region around the nuclei because there are strong effects of cool absorbing gas in the foreground and severe line blending that is due to the prolific molecular emission of Arp 220. Vibrationally excited emission of HCN is detected in both nuclei with a very high ratio relative to the total LFIR, higher than in any other observed galaxy and well above what is observed in Galactic hot cores. HCN v2 = 1f is observed to be marginally resolved in ~60 × 50 pc regions inside the dusty ~100 pc sized nuclear cores. Its emission is centered on our derived individual nuclear velocities based on HCO+ emission (VWN = 5342 ± 4 and VEN = 5454 ± 8 km s-1, for the western and eastern nucleus, respectively). With virial masses within r ~ 25-30 pc based on the HCN v2 = 1f line widths, we estimate gas surface densities (gas fraction fg = 0.1) of 3 ± 0.3 × 104 M? pc-2 (WN) and 1.1 ± 0.1 × 104 M? pc-2 (EN). The 4-3/3-2 flux density ratio could be consistent with optically thick emission, which would further constrain the size of the emitting region to >15 pc (EN) and >22 pc (WN). The absorption systems that may hide up to 70% of the HCN and HCO+ emission are found at velocities of-50 km s-1 (EN) and 6,-140, and-575 km s-1 (WN) relative to velocities of the nuclei. Blueshifted absorptions are the evidence of outflowing motions from both nuclei. Conclusions. Although vibrationally excited molecular transitions could also be affected by opacity, they may be our best tool to peer into the central few tens of parsecs around compact obscured nuclei like those of Arp 220. The bright vibrational emission implies the existence of a hot dust region radiatively pumping these transitions. We find evidence of a strong temperature gradient that would be responsible for both the HCN v2 pumping and the absorbed profiles from the vibrational ground state as a result of both continuum and self-absorption by cooler foreground gas.
  •  
7.
  • Privon, G., et al. (författare)
  • The Dense Molecular Gas and Nuclear Activity in the ULIRG IRAS 13120-5453
  • 2017
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 1538-4357 .- 0004-637X. ; 835:2, s. Article Number: 213-
  • Tidskriftsartikel (refereegranskat)abstract
    • We present new Atacama Large Millimeter/submillimeter Array Band 7 (?340 GHz) observations of the dense gas tracers HCN, HCO+, and CS in the local, single-nucleus, ultraluminous infrared galaxy IRAS 13120-5453. We find centrally enhanced HCN (4-3) emission, relative to HCO+ (4-3), but do not find evidence for radiative pumping of HCN. Considering the size of the starburst (0.5 kpc) and the estimated supernovae rate of ?1.2 yr-1, the high HCN/HCO+ ratio can be explained by an enhanced HCN abundance as a result of mechanical heating by the supernovae, though the active galactic nucleus and winds may also contribute additional mechanical heating. The starburst size implies a high ?IR of 4.7 × 1012 L? kpc-2, slightly below predictions of radiation-pressure limited starbursts. The HCN line profile has low-level wings, which we tentatively interpret as evidence for outflowing dense molecular gas. However, the dense molecular outflow seen in the HCN line wings is unlikely to escape the Galaxy and is destined to return to the nucleus and fuel future star formation. We also present modeling of Herschel observations of the H2O lines and find a nuclear dust temperature of ?40 K. IRAS 13120-5453 has a lower dust temperature and ?IR than is inferred for the systems termed "compact obscured nuclei (CONs)" (such as Arp 220 and Mrk 231). If IRAS 13120-5453 has undergone a CON phase, we are likely witnessing it at a time when the feedback has already inflated the nuclear ISM and diluted star formation in the starburst/active galactic nucleus core.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy