SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Costagliola Francesco 1981) ;pers:(Muller Sebastien 1976)"

Sökning: WFRF:(Costagliola Francesco 1981) > Muller Sebastien 1976

  • Resultat 1-10 av 23
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aalto, Susanne, 1964, et al. (författare)
  • A precessing molecular jet signaling an obscured, growing supermassive black hole in NGC 1377?
  • 2016
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 590, s. Art. no. A73-
  • Tidskriftsartikel (refereegranskat)abstract
    • With high resolution (0."25 × 0."18) ALMA CO 3-2 (345 GHz) observations of the nearby (D = 21 Mpc, 1" = 102 pc), extremely radio-quiet galaxy NGC 1377, we have discovered a high-velocity, very collimated nuclear outflow which we interpret as a molecular jet with a projected length of ± 150 pc. The launch region is unresolved and lies inside a radius r 40% of the flux in NGC 1377 and may be a slower, wide-angle molecular outflow which is partially entrained by the molecular jet. We discuss the driving mechanism of the molecular jet and suggest that it is either powered by a (faint) radio jet or by an accretion disk-wind similar to those found towards protostars. It seems unlikely that a massive jet could have been driven out by the current level of nuclear activity which should then have undergone rapid quenching. The light jet would only have expelled 10% of the inner gas and may facilitate nuclear activity instead of suppressing it. The nucleus of NGC 1377 harbours intense embedded activity and we detect emission from vibrationally excited HCN J = 4-3?2 = 1f which is consistent with hot gas and dust. We find large columns of H2 in the centre of NGC 1377 which may be a sign of a high rate of recent gas infall. The dynamical age ofthe molecular jet is short (
  •  
2.
  • Aalto, Susanne, 1964, et al. (författare)
  • Detection of HCN, HCO+, and HNC in the Mrk 231 molecular outflow. Dense molecular gas in the AGN wind
  • 2012
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 537, s. 44-51
  • Tidskriftsartikel (refereegranskat)abstract
    • We obtained high-resolution (1.''55 × 1.''28) observations of HCN, HCO+, HNC 1-0 and HC3N 10-9 of the ultraluminous galaxy (ULIRG) Mrk 231 with the IRAM Plateau de Bure Interferometer.Results: We detect luminous emission from HCN, HCO+ and HNC 1-0 in the QSO ULIRG Mrk 231. All three lines show broad line wings - which are particularly prominent for HCN. Velocities are found to be similar ( ≈ ± 750 km s-1) to those found for CO 1-0. This is the first time bright HCN, HCO+ and HNC emission has been detected in a large-scale galactic outflow. We find that both the blue- and red-shifted line wings are spatially extended by at least 0.''75 (>700 pc) in a north-south direction. The line wings are brighter (relative to the line center intensity) in HCN than in CO 1-0 and line ratios suggest that the molecular outflow consists of dense (n > 104 cm-3) and clumpy gas with a high HCN abundance X(HCN) > 10-8. These properties are consistent with the molecular gas being compressed and fragmented by shocks in the outflow. Alternatively, HCN is instead pumped by mid-IR continuum, but we propose that this effect is not strong for the spatially extended outflowing gas. In addition, we find that the rotation of the main disk, in east-west direction, is also evident in the HCN, HCO+ and HNC line emission. An unexpectedly bright HC3N 10-9 line is detected inside the central 400 pc of Mrk 231. This HC3N emission may emerge from a shielded, dust-enshrouded region within the inner 40-50 pc where the gas is heated to high temperatures (200-300 K) by the AGN.
  •  
3.
  • Aalto, Susanne, 1964, et al. (författare)
  • High resolution observations of HCN and HCO+J = 3–2 in the disk and outflow of Mrk 231 -- Detection of vibrationally excited HCN in the warped nucleus
  • 2015
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 574, s. 85-
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. Our goal is to study molecular gas properties in nuclei and large scale outflows/winds from active galactic nuclei (AGNs) and starburst galaxies.Methods. We obtained high resolution (0.̋25 to 0.̋90) observations of HCN and HCO+J = 3 → 2 of the ultraluminous QSO galaxy Mrk 231 with the IRAM Plateau de Bure Interferometer (PdBI).Results. We find luminous HCN and HCO+J = 3 → 2 emission in the main disk and we detect compact (r ≲ 0''̣1 (90 pc)) vibrationally excited HCN J = 3 → 2ν2 = 1f emission centred on the nucleus. The velocity field of the vibrationally excited HCN is strongly inclined (position angle PA = 155°) compared to the east-west rotation of the main disk. The nuclear (r ≲ 0.̋1) molecular mass is estimated to 8 × 108 M⊙ with an average N(H2) of 1.2 × 1024 cm-2. Prominent, spatially extended (≳350 pc) line wings are found for HCN J = 3 → 2 with velocities up to ± 750 km s-1. Line ratios indicate that the emission is emerging in dense gas n = 104−5 × 105 cm-3 of elevated HCN abundance X(HCN) = 10-8−10-6. The highest X(HCN) also allows for the emission to originate in gas of more moderate density. We tentatively detect nuclear emission from the reactive ion HOC+ with HCO+/HOC+ = 10−20.Conclusions. The HCN ν2 = 1f line emission is consistent with the notion of a hot, dusty, warped inner disk of Mrk 231 where the ν2 = 1f line is excited by bright mid-IR 14 μm continuum. We estimate the vibrational temperature Tvib to 200−400 K. Based on relative source sizes we propose that 50% of the main HCN emission may have its excitation affected by the radiation field through IR pumping of the vibrational ground state. The HCN emission in the line wings, however, is more extended and thus likely not strongly affected by IR pumping. Our results reveal that dense clouds survive (and/or are formed) in the AGN outflow on scales of at least several hundred pc before evaporating or collapsing. The elevated HCN abundance in the outflow is consistent with warm chemistry possibly related to shocks and/or X-ray irradiated gas. An upper limit to the mass and momentum flux is 4 × 108 M⊙ and 12LAGN/c, respectively, and we discuss possible driving mechanisms for the dense outflow.
  •  
4.
  • Aalto, Susanne, 1964, et al. (författare)
  • Luminous, pc-scale CO 6-5 emission in the obscured nucleus of NGC 1377
  • 2017
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 608, s. A22-
  • Tidskriftsartikel (refereegranskat)abstract
    • High-resolution submillimeter line and continuum observations are important in probing the morphology, column density, and dynamics of the molecular gas and dust around obscured active galactic nuclei (AGNs). With high-resolution (0'.06 x 0'.05 (6 x 5 pc)) ALMA 690 GHz observations we have found bright (T-B > 80 K) and compact (full width half maximum size (FWHM) size of 10 x 7 pc) CO 6-5 line emission in the nuclear region of the extremely radio-quiet galaxy NGC 1377. The CO 6-5 intensity is partially aligned with the previously discovered jet/outflow of NGC 1377 and is tracing dense (n > 10(4 )cm(-3)) hot molecular gas at the base of the outflow. The velocity structure is complex and shifts across the jet/outflow are discussed in terms of separate overlapping kinematical components or rotation. High-velocity gas (Delta v +/- 145 km s(-1)) is detected inside r
  •  
5.
  • Aalto, Susanne, 1964, et al. (författare)
  • Probing highly obscured, self-absorbed galaxy nuclei with vibrationally excited HCN
  • 2015
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 584
  • Tidskriftsartikel (refereegranskat)abstract
    • We present high resolution (0.'' 4) IRAM PdBI and ALMA mm and submm observations of the (ultra) luminous infrared galaxies ((U)LIRGs) IRAS 17208-0014, Arp220, IC 860 and Zw049.057 that reveal intense line emission from vibrationally excited (nu(2) = 1) J = 3-2 and 4-3 HCN. The emission is emerging from buried, compact (r 5 x 10(13) L-circle dot kpc(-2). These nuclei are likely powered by accreting supermassive black holes (SMBHs) and/or hot (>200 K) extreme starbursts. Vibrational, nu(2) = 1, lines of HCN are excited by intense 14 mu m mid-infrared emission and are excellent probes of the dynamics, masses, and physical conditions of (U)LIRG nuclei when H-2 column densities exceed 10(24) cm(-2). It is clear that these lines open up a new interesting avenue to gain access to the most obscured AGNs and starbursts. Vibrationally excited HCN acts as a proxy for the absorbed mid-infrared emission from the embedded nuclei, which allows for reconstruction of the intrinsic, hotter dust SED. In contrast, we show strong evidence that the ground vibrational state (. = 0), J = 3-2 and 4-3 rotational lines of HCN and HCO+ fail to probe the highly enshrouded, compact nuclear regions owing to strong self-and continuum absorption. The HCN and HCO+ line profiles are double-peaked because of the absorption and show evidence of non-circular motions-possibly in the form of in-or outflows. Detections of vibrationally excited HCN in external galaxies are so far limited to ULIRGs and early-type spiral LIRGs, and we discuss possible causes for this. We tentatively suggest that the peak of vibrationally excited HCN emission is connected to a rapid stage of nuclear growth, before the phase of strong feedback.
  •  
6.
  • Aalto, Susanne, 1964, et al. (författare)
  • Winds of change - a molecular outflow in NGC 1377? The anatomy of an extreme FIR-excess galaxy
  • 2012
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 546, s. Article Number: A68-
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. Our goal was to investigate the molecular gas distribution and kinematics in the extreme far-infrared (FIR) excess galaxy NGC 1377 and to address the nature and evolutionary status of the buried source. Methods. We used high-(0.'' 65 x 0.'' 52, (65 x 52 pc)) and low-(4.'' 88 x 2.'' 93) resolution SubMillimeter Array (SMA) observations to image the (CO)-C-12 and (CO)-C-13 2-1 line emission. Results. We find bright, complex (CO)-C-12 2-1 line emission in the inner 400 pc of NGC 1377. The (CO)-C-12 2-1 line has wings that are tracing a kinematical component that appears to be perpendicular to the component traced by the line core. Together with an intriguing X-shape of the integrated intensity and dispersion maps, this suggests that the molecular emission of NGC 1377 consists of a disk-outflow system. Lower limits to the molecular mass and outflow rate are M-out(H-2) > 1 x 10(7) M-circle dot and (M) over dot > 8 M-circle dot yr(-1). The age of the proposed outflow is estimated to be 1.4 Myr, the extent to be 200 pc and the outflow speed to be V-out = 140 km s(-1). The total molecular mass in the SMA map is estimated to M-tot(H-2) = 1.5 x 10(8) M-circle dot (on a scale of 400 pc) while in the inner r = 29 pc the molecular mass is M-core(H-2) = 1.7 x 10(7) M-circle dot with a corresponding H-2 column density of N(H-2) = 3.4 x 10(23) cm(-2) and an average (CO)-C-12 2-1 brightness temperature of 19 K. (CO)-C-13 2-1 emission is found at a factor 10 fainter than (CO)-C-12 in the low-resolution map while (CO)-O-18 2-1 remains undetected. We find weak 1 mm continuum emission of 2.4 mJy with spatial extent less than 400 pc. Conclusions. Observing the molecular properties of the FIR-excess galaxy NGC 1377 allows us to probe the early stages of nuclear activity and the onset of feedback in active galaxies. The age of the outflow supports the notion that the current nuclear activity is young - a few Myr. The outflow may be powered by radiation pressure from a compact, dust enshrouded nucleus, but other driving mechanisms are possible. The buried source may be an active galactic nucleus (AGN) or an extremely young (1 Myr) compact star-burst. Limitations on size and mass lead us to favor the AGN scenario, but additional studies are required to settle this question. In either case, the wind with its implied mass outflow rate will quench the nuclear power source within the very short time of 5-25 Myr. It is possible, however, that the gas is unable to escape the galaxy and may eventually fall back onto NGC 1377 again.
  •  
7.
  • Aladro, Rebeca, 1979, et al. (författare)
  • Molecular gas in the northern nucleus of Mrk 273: Physical and chemical properties of the disc and its outflow
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 617
  • Tidskriftsartikel (refereegranskat)abstract
    • Aiming to characterise the properties of the molecular gas in the ultra-luminous infrared galaxy Mrk 273 and its outflow, we used the NOEMA interferometer to image the dense-gas molecular tracers HCN, HCO+, HNC, HOC+ and HC3N at similar to 86 GHz and similar to 256 GHz with angular resolutions of 4.'' 9 x 4.'' 5 (similar to 3.7 x 3.4 kpc) and 0.'' 61 x 0.'' 55 (similar to 460 x 420 pc). We also modelled the flux of several H2O lines observed with Herschel using a radiative transfer code that includes excitation by collisions and far-infrared photons. The disc of the Mrk 273 north nucleus has two components with decoupled kinematics. The gas in the outer parts (R similar to 1.5 kpc) rotates with a south-east to north-west direction, while in the inner disc (R similar to 300 pc) follows a north-east to south-west rotation. The central 300 pc, which hosts a compact starburst region, is filled with dense and warm gas, and contains a dynamical mass of (4-5) x 10(9) M-circle dot, a luminosity of L'HCN = (3-4) x 10(8) K km s(-1) pc(2), and a dust temperature of 55 K. At the very centre, a compact core with R similar to 50 pc has a luminosity of LIR = 4 x 10(11) L-circle dot (30% of the total infrared luminosity), and a dust temperature of 95 K. The core is expanding at low velocities similar to 50-100 km s(-1), probably affected by the outflowing gas. We detect the blue-shifted component of the outflow, while the red-shifted counterpart remains undetected in our data. Its cold and dense phase reaches fast velocities up to similar to 1000 km s(-1), while the warm outflowing gas has more moderate maximum velocities of similar to 600 km s(-1). The outflow is compact, being detected as far as 460 pc from the centre in the northern direction, and has a mass of dense gas <= 8 x 10(8) M-circle dot. The difference between the position angles of the inner disc (similar to 70 degrees) and the outflow (similar to 10 degrees) indicates that the outflow is likely powered by the AGN, and not by the starburst. Regarding the chemistry in Mrk 273, we measure an extremely low HCO+/HOC+ ratio of 10 +/- 5 in the inner disc of Mrk 273.
  •  
8.
  • Burillo, S. G., et al. (författare)
  • Molecular line emission in NGC 1068 imaged with ALMA : I. An AGN-driven outflow in the dense molecular gas
  • 2014
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 567, s. 125-
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. We investigate the fueling and the feedback of star formation and nuclear activity in NGC 1068, a nearby (D = 14 Mpc) Seyfert 2 barred galaxy, by analyzing the distribution and kinematics of the molecular gas in the disk. We aim to understand if and how gas accretion can self-regulate.Methods. We have used the Atacama Large Millimeter Array (ALMA) to map the emission of a set of dense molecular gas (n(H2) ' 1056 cm3) tracers (CO(3-2), CO(6-5), HCN(4-3), HCO+(4-3), and CS(7-6)) and their underlying continuum emission in the central r ∼ 2 kpc of NGC 1068 with spatial resolutions ∼0:3000:500 (∼20-35 pc for the assumed distance of D = 14 Mpc). Results. The sensitivity and spatial resolution of ALMA give an unprecedented detailed view of the distribution and kinematics of the dense molecular gas (n(H2) ≈ 1056cm3) in NGC 1068. Molecular line and dust continuum emissions are detected from a r ∼ 200 pc off-centered circumnuclear disk (CND), from the 2.6 kpc-diameter bar region, and from the r ∼ 1:3 kpc starburst (SB) ring. Most of the emission in HCO+, HCN, and CS stems from the CND. Molecular line ratios show dramatic order-of-magnitude changes inside the CND that are correlated with the UV/X-ray illumination by the active galactic nucleus (AGN), betraying ongoing feedback. We used the dust continuum fluxes measured by ALMA together with NIR/MIR data to constrain the properties of the putative torus using CLUMPY models and found a torus radius of 20+6 10 pc. The Fourier decomposition of the gas velocity field indicates that rotation is perturbed by an inward radial flow in the SB ring and the bar region. However, the gas kinematics from r ∼ 50 pc out to r ∼ 400 pc reveal a massive (Mmol ∼ 2:7+0:9 1:2 × 107 M) outflow in all molecular tracers. The tight correlation between the ionized gas outflow, the radio jet, and the occurrence of outward motions in the disk suggests that the outflow is AGN driven. Conclusions. The molecular outflow is likely launched when the ionization cone of the narrow line region sweeps the nuclear disk. The outflow rate estimated in the CND, dM=dt ∼ 63+21 37 M yr1, is an order of magnitude higher than the star formation rate at these radii, confirming that the outflow is AGN driven. The power of the AGN is able to account for the estimated momentum and kinetic luminosity of the outflow. The CND mass load rate of the CND outflow implies a very short gas depletion timescale of ≤1 Myr. The CND gas reservoir is likely replenished on longer timescales by efficient gas inflow from the outer disk. © ESO 2014.
  •  
9.
  • Costagliola, Francesco, 1981, et al. (författare)
  • An ALMA Spectral Scan of the Obscured Luminous Infrared Galaxy NGC 4418
  • 2015
  • Ingår i: 4th ALMA Science Conference on Revolution in Astronomy with ALMA: The Third Year, Tokyo, Japan, 8-11 December. - 9781583818831 ; 499, s. 95-98
  • Konferensbidrag (refereegranskat)abstract
    • Until recently, the study of the molecular interstellar medium of galaxies has been mostly focused on a few, relatively abundant, molecular species. Recent attempts at modeling the molecular emission of active galaxies have shown that standard high-density tracers do not provide univocal results and are not able to discriminate between different relevant environments (e.g., star-formation vs AGN). Spectral lines surveys allow us to explore the richness of the molecular spectrum of galaxies, provide tighter constrains to astrochemical models, and find new more sensitive tracers of specific gas properties. What started as a time-consuming pioneering work has become now routinely accessible with the advent of ALMA. Here we report the results of the first ALMA spectral scan of an obscured luminous infrared galaxy (LIRG), NGC 4418. The galaxy has a very compact IR core and narrow emission lines that make it the perfect target for the study of vibrationally excited molecules. More than 300 emission lines from 45 molecular species were identified and modeled via an LTE and NLTE analysis. The molecular excitation and abundances derived offer a unique insight into the chemistry of obscured LIRGs.
  •  
10.
  • Costagliola, Francesco, 1981, et al. (författare)
  • Exploring the molecular chemistry and excitation in obscured LIRGs: An ALMA mm-wave spectral scan of NGC 4418
  • 2016
  • Ingår i: EAS Publications Series. - : EDP Sciences. - 1633-4760 .- 1638-1963. - 9782759820221 ; 75-76, s. 67-68
  • Konferensbidrag (refereegranskat)abstract
    • The compact, obscured nuclei (CON) of luminous infrared galaxies (LIRG) combine large molecular columns with intense infrared (IR), ultra-violet (UV), and X-radiation and represent ideal laboratories for the study of the chemistry of the interstellar medium (ISM) under extreme conditions. Here we present the first ALMA wide-band spectral scan of a dusty LIRG, the CON NGC 4418. We derive molecular abundances and compare them with other Galactic and extragalactic sources. Our spectral scan confirms that the chemical complexity in the nucleus of NGC 4418 is one of the highest ever observed outside our Galaxy. We suggest that the galaxy may be a template for a new kind of chemistry and excitation, typical of CON.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 23

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy