SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Couvreur G) "

Sökning: WFRF:(Couvreur G)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Torres Jimenez, Maria Fernanda, et al. (författare)
  • Phylogenomics of the Palm Tribe Lepidocaryeae (Calamoideae: Arecaceae) and Description of a New Species of Mauritiella
  • 2021
  • Ingår i: Systematic Botany. - : American Society of Plant Taxonomists. - 0363-6445. ; 46:3, s. 863-874
  • Tidskriftsartikel (refereegranskat)abstract
    • The palm tribe Lepidocaryeae (Arecaceae) comprises seven genera and 51 currently accepted species that are distributed in lowland tropical forests and savannas across Africa and the Americas. Subtribal relationships within Lepidocaryeae have been a persistent challenge, limiting our understanding of its systematics, morphology, and biogeography. Several aspects make the tribe an ideal system to study plant evolution and diversity: it is well-represented in the fossil record as a prolific pollen producer, its continental diversity contradicts common biodiversity patterns of lower species richness in Africa in comparison to South America, and it contains one of the most abundant Amazonian tree species, Mauritia flexuosa. Here, we investigated the systematics of the tribe by sampling 122 individuals representing 42 species (82% of the tribe), using target sequence capture. We recovered nearly 10,000 single nucleotide polymorphisms from nuclear and plastid DNA across 146 target sequences to separately infer a phylogenomic tree. Our results strongly support inter-generic and inter-specific relationships, where a majority of nodes were resolved with over 90% bootstrap support. We also identify strong phylogenetic support for the recognition of a new species from central and south Amazonia, Mauritiella disticha. The distichous phyllotaxy is diagnostic of the species within the genus. Rare and currently only known from the middle-lower Madeira River basin in the state of Amazonas, Brazil, M. disticha is restricted to open vegetation and forest edges growing in white sand habitats with saturated or well-drained soils. Our preliminary red list assessment suggests its threatened status to be vulnerable (VU). We use our phylogenomic inference to define and contextualize systematic relationships in the tribe, and present a formal species description.
  •  
3.
  • Muscarella, Robert, et al. (författare)
  • The global abundance of tree palms
  • 2020
  • Ingår i: Global Ecology and Biogeography. - : Wiley. - 1466-822X .- 1466-8238. ; 29:9, s. 1495-1514
  • Tidskriftsartikel (refereegranskat)abstract
    • AimPalms are an iconic, diverse and often abundant component of tropical ecosystems that provide many ecosystem services. Being monocots, tree palms are evolutionarily, morphologically and physiologically distinct from other trees, and these differences have important consequences for ecosystem services (e.g., carbon sequestration and storage) and in terms of responses to climate change. We quantified global patterns of tree palm relative abundance to help improve understanding of tropical forests and reduce uncertainty about these ecosystems under climate change.LocationTropical and subtropical moist forests.Time periodCurrent.Major taxa studiedPalms (Arecaceae).MethodsWe assembled a pantropical dataset of 2,548 forest plots (covering 1,191 ha) and quantified tree palm (i.e., ≥10 cm diameter at breast height) abundance relative to co‐occurring non‐palm trees. We compared the relative abundance of tree palms across biogeographical realms and tested for associations with palaeoclimate stability, current climate, edaphic conditions and metrics of forest structure.ResultsOn average, the relative abundance of tree palms was more than five times larger between Neotropical locations and other biogeographical realms. Tree palms were absent in most locations outside the Neotropics but present in >80% of Neotropical locations. The relative abundance of tree palms was more strongly associated with local conditions (e.g., higher mean annual precipitation, lower soil fertility, shallower water table and lower plot mean wood density) than metrics of long‐term climate stability. Life‐form diversity also influenced the patterns; palm assemblages outside the Neotropics comprise many non‐tree (e.g., climbing) palms. Finally, we show that tree palms can influence estimates of above‐ground biomass, but the magnitude and direction of the effect require additional work.ConclusionsTree palms are not only quintessentially tropical, but they are also overwhelmingly Neotropical. Future work to understand the contributions of tree palms to biomass estimates and carbon cycling will be particularly crucial in Neotropical forests.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy