SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Cremonesi Marta) ;lar1:(uu)"

Search: WFRF:(Cremonesi Marta) > Uppsala University

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Ambrosini, Valentina, et al. (author)
  • Consensus on molecular imaging and theranostics in neuroendocrine neoplasms
  • 2021
  • In: European Journal of Cancer. - : Elsevier. - 0959-8049 .- 1879-0852. ; 146, s. 56-73
  • Research review (peer-reviewed)abstract
    • Nuclear medicine plays an increasingly important role in the management neuroendocrine neoplasms (NEN). Somatostatin analogue (SSA)-based positron emission tomography/computed tomography (PET/CT) and peptide receptor radionuclide therapy (PRRT) have been used in clinical trials and approved by the European Medicines Agency (EMA) and the US Food and Drug Administration (FDA). European Association of Nuclear Medicine (EANM) Focus 3 performed a multidisciplinary Delphi process to deliver a balanced perspective on molecular imaging and radionuclide therapy in well-differentiated neuroendocrine tumours (NETs). NETs form in cells that interact with the nervous system or in glands that produce hormones. These cells, called neuroendocrine cells, can be found throughout the body, but NETs are most often found in the abdomen, especially in the gastrointestinal tract. These tumours may also be found in the lungs, pancreas and adrenal glands. In addition to being rare, NETs are also complex and may be difficult to diagnose. Most NETs are non-functioning; however, a minority present with symptoms related to hypersecretion of bioactive compounds. NETs often do not cause symptoms early in the disease process. When diagnosed, substantial number of patients are already found to have metastatic disease. Several societies' guidelines address Neuroendocrine neoplasms (NENs) management; however, many issues are still debated, due to both the difficulty in acquiring strong clinical evidence in a rare and heterogeneous disease and the different availability of diagnostic and therapeutic options across countries. EANM Focus 3 reached consensus on employing 68gallium-labelled somatostatin analogue ([68Ga]Ga-DOTA-SSA)-based PET/CT with diagnostic CT or magnetic resonance imaging (MRI) for unknown primary NET detection, metastatic NET, NET staging/restaging, suspected extra-adrenal pheochromocytoma/paraganglioma and suspected paraganglioma. Consensus was reached on employing 18fluorine-fluoro-2-deoxyglucose ([18F]FDG) PET/CT in neuroendocrine carcinoma, G3 NET and in G1-2 NET with mismatched lesions (CT-positive/[68Ga]Ga-DOTA-SSA-negative). Peptide receptor radionuclide therapy (PRRT) was recommended for second line treatment for gastrointestinal NET with [68Ga]Ga-DOTA-SSA uptake in all lesions, in G1/G2 NET at disease progression, and in a subset of G3 NET provided all lesions are positive at [18F]FDG and [68Ga]Ga-DOTA-SSA. PRRT rechallenge may be used for in patients with stable disease for at least 1 year after therapy completion. An international consensus is not only a prelude to a more standardised management across countries but also serves as a guide for the direction to follow when designing new research studies.
  •  
2.
  • Gear, Jonathan, et al. (author)
  • EANM enabling guide : how to improve the accessibility of clinical dosimetry
  • 2023
  • In: European Journal of Nuclear Medicine and Molecular Imaging. - : Springer. - 1619-7070 .- 1619-7089. ; 50, s. 1861-1868
  • Journal article (peer-reviewed)abstract
    • Dosimetry can be a useful tool for personalization of molecular radiotherapy (MRT) procedures, enabling the continuous development of theranostic concepts. However, the additional resource requirements are often seen as a barrier to implementation. This guide discusses the requirements for dosimetry and demonstrates how a dosimetry regimen can be tailored to the available facilities of a centre. The aim is to help centres wishing to initiate a dosimetry service but may not have the experience or resources of some of the more established therapy and dosimetry centres. The multidisciplinary approach and different personnel requirements are discussed and key equipment reviewed example protocols demonstrating these factors are given in the supplementary material for the main therapies carried out in nuclear medicine, including [I-131]-NaI for benign thyroid disorders, [Lu-177]-DOTATATE and I-131-mIBG for neuroendocrine tumours and [Y-90]-microspheres for unresectable hepatic carcinoma.
  •  
3.
  • Ivashchenko, Oleksandra V., et al. (author)
  • Time-Activity data fitting in molecular Radiotherapy : Methodology and pitfalls
  • 2024
  • In: Physica medica (Testo stampato). - : Elsevier. - 1120-1797 .- 1724-191X. ; 117
  • Journal article (peer-reviewed)abstract
    • Absorbed radiation doses are essential in assessing the effects, e.g. safety and efficacy, of radiopharmaceutical therapy (RPT). Patient-specific absorbed dose calculations in the target or the organ at risk require multiple inputs. These include the number of disintegrations in the organ, i.e. the time-integrated activities (TIAs) of the organs, as well as other parameters describing the process of radiation energy deposition in the target tissue (i.e. mean energy per disintegration, radiation dose constants, etc). TIAs are then estimated by incorporating the area under the radiopharmaceutical's time-activity curve (TAC), which can be obtained by quantitative measurements of the biokinetics in the patient (typically based on imaging data such as planar scintigraphy, SPECT/CT, PET/CT, or blood and urine samples). The process of TAC determination/calculation for RPT generally depends on the user, e.g., the chosen number and schedule of measured time points, the selection of the fit function, the error model for the data and the fit algorithm. These decisions can strongly affect the final TIA values and thus the accuracy of calculated absorbed doses. Despite the high clinical importance of the TIA values, there is currently no consensus on processing time-activity data or even a clear understanding of the influence of uncertainties and variations in personalised RPT dosimetry related to user-dependent TAC calculation. As a first step towards minimising site-dependent variability in RPT dosimetry, this work provides an overview of quality assurance and uncertainty management considerations of the TIA estimation.
  •  
4.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view