SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Cronholm Martin) "

Sökning: WFRF:(Cronholm Martin)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Alricsson, Marie, et al. (författare)
  • Spinal alignment, mobility of the hip and thoracic spine and prevalence of low back pain in young elite cross-country skiers.
  • 2016
  • Ingår i: Journal of Exercise Rehabilitation. - Seoul : Korean Society of Exercise Rehabilitation. - 2288-176X .- 2288-1778. ; 12:1, s. 21-28
  • Tidskriftsartikel (refereegranskat)abstract
    • This study investigated the association between spinal alignment, mobility of the hips and the thoracic spine and low back pain in adolescent cross-country skiers. Cohort of 51 elite cross-country skiers from a cross-country skiing high school in Sweden participated in the study. Sagittal spinal alignment, active range of motion in flexion, extension and rotation of the thoracic spine as well as passive and active extension of the hips were measured. The participants also completed a questionnaire regarding training, competition, skiing technique and occurrence of low back pain. A simple linear regression was calculated to predict pain score based on thoraco-lumbar relation, with a significant (P<0.05) regression equation of y=-0.069x+2.280 (standard error of estimate, 0.034). Participants with greater lordosis than kyphosis were more likely to suffer from low back pain than subjects without this offset. Thoracic mobility and passive or active hip extension showed no correlation with low back pain. Sagittal spinal alignment seems to be related with low back pain among young elite cross-country skiers. This study shows that range of motion of the thoracic spine and hips do not have an effect on the prevalence of low back pain in this population.
  •  
3.
  • Schmitz, Birger, et al. (författare)
  • Meteorite flux to Earth in the Early Cretaceous as reconstructed from sediment-dispersed extraterrestrial spinels
  • 2017
  • Ingår i: Geology. - 0091-7613. ; 45:9, s. 807-810
  • Tidskriftsartikel (refereegranskat)abstract
    • We show that Earth’s sedimentary strata can provide a record of the collisional evolution of the asteroid belt. From 1652 kg of pelagic Maiolica limestone of Berriasian–Hauterivian age from Italy, we recovered 108 extraterrestrial spinel grains (32–250 μm) representing relict minerals from coarse micrometeorites. Elemental and three oxygen isotope analyses were used to characterize the grains, providing a first-order estimate of the major types of asteroids delivering material at the time. Comparisons were made with meteorite-flux time “windows” in the Ordovician before and after the L-chondrite parent-body breakup. In the Early Cretaceous, ∼80% of the extraterrestrial spinels originated from ordinary chondrites. The ratios between the three groups of ordinary chondrites, H, L, LL, appear similar to the present, ∼1:1:0.2, but differ significantly from Ordovician ratios. We found no signs of a hypothesized Baptistina LL-chondrite breakup event. About 10% of the grains in the Maiolica originate from achondritic meteorite types that are very rare (<1%) on Earth today, but that were even more common in the Ordovician. Because most meteorite groups have lower spinel content than the ordinary chondrites, our data indicate that the latter did not dominate the flux during the Early Cretaceous to the same extent as today. Based on studies of three windows in deep time, we argue that there may have been a gradual long-term (a few hundred million years) turnover in the meteorite flux from dominance of achondrites in the early Phanerozoic to ordinary chondrites in the late Phanerozoic, interrupted by short-term (a few million years) meteorite cascades from single asteroid breakup events.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy