SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Crosbie J) ;lar1:(kth)"

Sökning: WFRF:(Crosbie J) > Kungliga Tekniska Högskolan

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Crosbie, J. C., et al. (författare)
  • Reference dosimetry at the Australian Synchrotron's imaging and medical beamline using free-air ionization chamber measurements and theoretical predictions of air kerma rate and half value layer
  • 2013
  • Ingår i: Medical physics (Lancaster). - : Wiley. - 0094-2405. ; 40:6, s. 062103-
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: Novel, preclinical radiotherapy modalities are being developed at synchrotrons around the world, most notably stereotactic synchrotron radiation therapy and microbeam radiotherapy at the European Synchrotron Radiation Facility in Grenoble, France. The imaging and medical beamline (IMBL) at the Australian Synchrotron has recently become available for preclinical radiotherapy and imaging research with clinical trials, a distinct possibility in the coming years. The aim of this present study was to accurately characterize the synchrotron-generated x-ray beam for the purposes of air kerma-based absolute dosimetry. Methods: The authors used a theoretical model of the energy spectrum from the wiggler source and validated this model by comparing the transmission through copper absorbers (0.1-3.0 mm) against real measurements conducted at the beamline. The authors used a low energy free air ionization chamber (LEFAC) from the Australian Radiation Protection and Nuclear Safety Agency and a commercially available free air chamber (ADC-105) for the measurements. The dimensions of these two chambers are different from one another requiring careful consideration of correction factors. Results: Measured and calculated half value layer (HVL) and air kerma rates differed by less than 3% for the LEFAC when the ion chamber readings were corrected for electron energy loss and ion recombination. The agreement between measured and predicted air kerma rates was less satisfactory for the ADC-105 chamber, however. The LEFAC and ADC measurements produced a first half value layer of 0.405 ± 0.015 and 0.412 ± 0.016 mm Cu, respectively, compared to the theoretical prediction of 0.427 ± 0.012 mm Cu. The theoretical model based upon a spectrum calculator derived a mean beam energy of 61.4 keV with a first half value layer of approximately 30 mm in water. Conclusions: The authors showed in this study their ability to verify the predicted air kerma rate and x-ray attenuation curve on the IMBL using a simple experimental method, namely, HVL measurements. The HVL measurements strongly supports the x-ray beam spectrum, which in turn has a profound effect on x-ray dosimetry.
  •  
2.
  • Prasad, G., et al. (författare)
  • Applying a brain-computer interface to support motor imagery practice in people with stroke for upper limb recovery : A feasibility study
  • 2010
  • Ingår i: Journal of NeuroEngineering and Rehabilitation. - : Springer Science and Business Media LLC. - 1743-0003. ; 7:1, s. 60-
  • Tidskriftsartikel (refereegranskat)abstract
    • There is now sufficient evidence that using a rehabilitation protocol involving motor imagery (MI) practice in conjunction with physical practice (PP) of goal-directed rehabilitation tasks leads to enhanced functional recovery of paralyzed limbs among stroke sufferers. It is however difficult to confirm patient engagement during an MI in the absence of any on-line measure. Fortunately an EEG-based brain-computer interface (BCI) can provide an on-line measure of MI activity as a neurofeedback for the BCI user to help him/her focus better on the MI task. However initial performance of novice BCI users may be quite moderate and may cause frustration. This paper reports a pilot study in which a BCI system is used to provide a computer game-based neurofeedback to stroke participants during the MI part of a protocol. Methods. The participants included five chronic hemiplegic stroke sufferers. Participants received up to twelve 30-minute MI practice sessions (in conjunction with PP sessions of the same duration) on 2 days a week for 6 weeks. The BCI neurofeedback performance was evaluated based on the MI task classification accuracy (CA) rate. A set of outcome measures including action research arm test (ARAT) and grip strength (GS), was made use of in assessing the upper limb functional recovery. In addition, since stroke sufferers often experience physical tiredness, which may influence the protocol effectiveness, their fatigue and mood levels were assessed regularly. Results. Positive improvement in at least one of the outcome measures was observed in all the participants, while improvements approached a minimal clinically important difference (MCID) for the ARAT. The on-line CA of MI induced sensorimotor rhythm (SMR) modulation patterns in the form of lateralized event-related desynchronization (ERD) and event-related synchronization (ERS) effects, for novice participants was in a moderate range of 60-75% within the limited 12 training sessions. The ERD/ERS change from the first to the last session was statistically significant for only two participants. Conclusions. Overall the crucial observation is that the moderate BCI classification performance did not impede the positive rehabilitation trends as quantified with the rehabilitation outcome measures adopted in this study. Therefore it can be concluded that the BCI supported MI is a feasible intervention as part of a post-stroke rehabilitation protocol combining both PP and MI practice of rehabilitation tasks. Although these findings are promising, the scope of the final conclusions is limited by the small sample size and the lack of a control group.
  •  
3.
  • Prasad, G., et al. (författare)
  • Using motor imagery based brain-computer interface for post-stroke rehabilitation
  • 2009
  • Ingår i: 2009 4TH INTERNATIONAL IEEE/EMBS CONFERENCE ON NEURAL ENGINEERING. - 9781424420735 ; , s. 251-255
  • Konferensbidrag (refereegranskat)abstract
    • There is now sufficient evidence that using a rehabilitation protocol involving motor imagery (MI) practice (or mental practice (MP)) in conjunction with physical practice (PP) of goal-directed rehabilitation tasks leads to enhanced functional recovery of paralyzed limbs among stroke sufferers. It is however difficult to ensure patient engagement during MP in the absence of any on-line measure of the MP. Fortunately in an EEG-based brain-computer interface (BCI), an on-line measure of MI activity is used to devise neurofeedback for the BCI user to help him/her focus better on the task. This paper reports a pilot study in which an EEG-based BCI system is used to provide neurofeedback to stroke participants during the MP part of the rehabilitation protocol. This helps patients to undertake the MP with stronger focus. The participants included five chronic stroke sufferers. The trial was undertaken for 12 sessions over a period of 6 weeks. A set of rehabilitation outcome measures including action research arm test (ARAT) and motricity index was made use of in assessing functional recovery. Moderate improvements approaching a minimal clinically important difference (MCID) were observed for the ARAT. Small positive improvements were also observed in other outcome measures. Participants appeared highly enthusiastic about participating in the study and regularly attended all the sessions. Although without a randomized control trial, it is difficult to ascertain whether the enhanced rehabilitation gain is primarily because of BCI neurofeedack, the positive gains in outcome measures demonstrate the potential and feasibility of using BCI for post-stroke rehabilitation.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy