SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Cully J. C.) "

Sökning: WFRF:(Cully J. C.)

  • Resultat 1-10 av 16
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aaltonen, T., et al. (författare)
  • Combination of Tevatron Searches for the Standard Model Higgs Boson in the W+W- Decay Mode
  • 2010
  • Ingår i: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 104:6, s. 061802-
  • Tidskriftsartikel (refereegranskat)abstract
    • We combine searches by the CDF and D0 Collaborations for a Higgs boson decaying to W+W-. The data correspond to an integrated total luminosity of 4.8 (CDF) and 5.4 (D0) fb(-1) of p (p) over bar collisions at root s = 1.96 TeV at the Fermilab Tevatron collider. No excess is observed above background expectation, and resulting limits on Higgs boson production exclude a standard model Higgs boson in the mass range 162-166 GeV at the 95% C.L.
  •  
2.
  • Maksimovic, M., et al. (författare)
  • First observations and performance of the RPW instrument on board the Solar Orbiter mission
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 656
  • Tidskriftsartikel (refereegranskat)abstract
    • The Radio and Plasma Waves (RPW) instrument on the ESA Solar Orbiter mission is designed to measure in situ magnetic and electric fields and waves from the continuum up to several hundred kHz. The RPW also observes solar and heliospheric radio emissions up to 16 MHz. It was switched on and its antennae were successfully deployed two days after the launch of Solar Orbiter on February 10, 2020. Since then, the instrument has acquired enough data to make it possible to assess its performance and the electromagnetic disturbances it experiences. In this article, we assess its scientific performance and present the first RPW observations. In particular, we focus on a statistical analysis of the first observations of interplanetary dust by the instrument's Thermal Noise Receiver. We also review the electro-magnetic disturbances that RPW suffers, especially those which potential users of the instrument data should be aware of before starting their research work.
  •  
3.
  • Maksimovic, M., et al. (författare)
  • The Solar Orbiter Radio and Plasma Waves (RPW) instrument
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP SCIENCES S A. - 0004-6361 .- 1432-0746. ; 642
  • Tidskriftsartikel (refereegranskat)abstract
    • The Radio and Plasma Waves (RPW) instrument on the ESA Solar Orbiter mission is described in this paper. This instrument is designed to measure in-situ magnetic and electric fields and waves from the continuous to a few hundreds of kHz. RPW will also observe solar radio emissions up to 16 MHz. The RPW instrument is of primary importance to the Solar Orbiter mission and science requirements since it is essential to answer three of the four mission overarching science objectives. In addition RPW will exchange on-board data with the other in-situ instruments in order to process algorithms for interplanetary shocks and type III langmuir waves detections.
  •  
4.
  • Angelopoulos, V., et al. (författare)
  • First Results from the THEMIS Mission
  • 2008
  • Ingår i: Space Science Reviews. - : Springer Science and Business Media LLC. - 0038-6308 .- 1572-9672. ; 141:1-4, s. 453-476
  • Forskningsöversikt (refereegranskat)abstract
    • THEMIS was launched on February 17, 2007 to determine the trigger and large-scale evolution of substorms. During the first seven months of the mission the five satellites coasted near their injection orbit to avoid differential precession in anticipation of orbit placement, which started in September 2007 and led to a commencement of the baseline mission in December 2007. During the coast phase the probes were put into a string-of-pearls configuration at 100 s of km to 2 R-E along-track separations, which provided a unique view of the magnetosphere and enabled an unprecedented dataset in anticipation of the first tail season. In this paper we describe the first THEMIS substorm observations, captured during instrument commissioning on March 23, 2007. THEMIS measured the rapid expansion of the plasma sheet at a speed that is commensurate with the simultaneous expansion of the auroras on the ground. These are the first unequivocal observations of the rapid westward expansion process in space and on the ground. Aided by the remote sensing technique at energetic particle boundaries and combined with ancillary measurements and MHD simulations, they allow determination and mapping of space currents. These measurements show the power of the THEMIS instrumentation in the tail and the radiation belts. We also present THEMIS Flux Transfer Events (FTE) observations at the magnetopause, which demonstrate the importance of multi-point observations there and the quality of the THEMIS instrumentation in that region of space.
  •  
5.
  • Vaivads, Andris, et al. (författare)
  • Turbulence Heating ObserveR - satellite mission proposal
  • 2016
  • Ingår i: JOURNAL OF PLASMA PHYSICS. - 0022-3778. ; 82
  • Tidskriftsartikel (refereegranskat)abstract
    • The Universe is permeated by hot, turbulent, magnetized plasmas. Turbulent plasma is a major constituent of active galactic nuclei, supernova remnants, the intergalactic and interstellar medium, the solar corona, the solar wind and the Earth's magnetosphere, just to mention a few examples. Energy dissipation of turbulent fluctuations plays a key role in plasma heating and energization, yet we still do not understand the underlying physical mechanisms involved. THOR is a mission designed to answer the questions of how turbulent plasma is heated and particles accelerated, how the dissipated energy is partitioned and how dissipation operates in different regimes of turbulence. THOR is a single-spacecraft mission with an orbit tuned to maximize data return from regions in near-Earth space - magnetosheath, shock, foreshock and pristine solar wind - featuring different kinds of turbulence. Here we summarize the THOR proposal submitted on 15 January 2015 to the 'Call for a Medium-size mission opportunity in ESAs Science Programme for a launch in 2025 (M4)'. THOR has been selected by European Space Agency (ESA) for the study phase.
  •  
6.
  • Ergun, R. E., et al. (författare)
  • The Axial Double Probe and Fields Signal Processing for the MMS Mission
  • 2016
  • Ingår i: Space Science Reviews. - : Springer Netherlands. - 0038-6308 .- 1572-9672. ; 199:1-4, s. 167-188
  • Forskningsöversikt (refereegranskat)abstract
    • The Axial Double Probe (ADP) instrument measures the DC to similar to 100 kHz electric field along the spin axis of the Magnetospheric Multiscale (MMS) spacecraft (Burch et al., Space Sci. Rev., 2014, this issue), completing the vector electric field when combined with the spin plane double probes (SDP) (Torbert et al., Space Sci. Rev., 2014, this issue, Lindqvist et al., Space Sci. Rev., 2014, this issue). Two cylindrical sensors are separated by over 30 m tip-to-tip, the longest baseline on an axial DC electric field ever attempted in space. The ADP on each of the spacecraft consists of two identical, 12.67 m graphite coilable booms with second, smaller 2.25 m booms mounted on their ends. A significant effort was carried out to assure that the potential field of the MMS spacecraft acts equally on the two sensors and that photo- and secondary electron currents do not vary over the spacecraft spin. The ADP on MMS is expected to measure DC electric field with a precision of similar to 1 mV/m, a resolution of similar to 25 mu V/m, and a range of similar to 1 V/m in most of the plasma environments MMS will encounter. The Digital Signal Processing (DSP) units on the MMS spacecraft are designed to perform analog conditioning, analog-to-digital (A/D) conversion, and digital processing on the ADP, SDP, and search coil magnetometer (SCM) (Le Contel et al., Space Sci. Rev., 2014, this issue) signals. The DSP units include digital filters, spectral processing, a high-speed burst memory, a solitary structure detector, and data compression. The DSP uses precision analog processing with, in most cases, > 100 dB in dynamic range, better that -80 dB common mode rejection in electric field (E) signal processing, and better that -80 dB cross talk between the E and SCM (B) signals. The A/D conversion is at 16 bits with similar to 1/4 LSB accuracy and similar to 1 LSB noise. The digital signal processing is powerful and highly flexible allowing for maximum scientific return under a limited telemetry volume. The ADP and DSP are described in this article.
  •  
7.
  • Lockwood, M, et al. (författare)
  • Coordinated Cluster and ground-based instrument observations of transient changes in the magnetopause boundary layer during an interval of predominantly northward IMF : relation to reconnection pulses and FTE signatures
  • 2001
  • Ingår i: Annales Geophysicae. - : Copernicus GmbH. - 0992-7689 .- 1432-0576. ; 19:10-12, s. 1613-1640
  • Forskningsöversikt (refereegranskat)abstract
    • We study a series of transient entries into the low-latitude boundary layer (LLBL) of all four Cluster spacecraft during an outbound pass through the mid-afternoon magnetopause ([X(GSM), Y(GSM), Z(GSM)] approximate to [2, 7, 9] R(E)). The events take place during an interval of northward IMF, as seen in the data from the ACE satellite and lagged by a propagation delay of 75 min that is well-defined by two separate studies: (1) the magnetospheric variations prior to the northward turning (Lockwood et al., 2001, this issue) and (2) the field clock angle seen by Cluster after it had emerged into the magnetosheath (Opgenoorth et al., 2001, this issue). With an additional lag of 16.5 min, the transient LLBL events cor-relate well with swings of the IMF clock angle (in GSM) to near 90degrees. Most of this additional lag is explained by ground-based observations, which reveal signatures of transient reconnection in the pre-noon sector that then take 10-15 min to propagate eastward to 15 MLT, where they are observed by Cluster. The eastward phase speed of these signatures agrees very well with the motion deduced by the cross-correlation of the signatures seen on the four Cluster spacecraft. The evidence that these events are reconnection pulses includes: transient erosion of the noon 630 nm (cusp/cleft) aurora to lower latitudes; transient and travelling enhancements of the flow into the polar cap, imaged by the AMIE technique; and poleward-moving events moving into the polar cap, seen by the EISCAT Svalbard Radar (ESR). A pass of the DMSP-F15 satellite reveals that the open field lines near noon have been opened for some time: the more recently opened field lines were found closer to dusk where the flow transient and the poleward-moving event intersected the satellite pass. The events at Cluster have ion and electron characteristics predicted and observed by Lockwood and Hapgood (1998) for a Flux Transfer Event (FTE), with allowance for magnetospheric ion reflection at Alfvenic disturbances in the magnetopause reconnection layer. Like FTEs, the events are about 1 R(E) in their direction of motion and show a rise in the magnetic field strength, but unlike FTEs, in general, they show no pressure excess in their core and hence, no characteristic bipolar signature in the boundary-normal component. However, most of the events were observed when the magnetic field was southward, i.e. on the edge of the interior magnetic cusp, or when the field was parallel to the magnetic equatorial plane. Only when the satellite begins to emerge from the exterior boundary (when the field was northward), do the events start to show a pressure excess in their core and the consequent bipolar signature. We identify the events as the first observations of FTEs at middle altitudes.
  •  
8.
  •  
9.
  • Eastwood, J. P., et al. (författare)
  • THEMIS observations of a hot flow anomaly : Solar wind, magnetosheath, and ground-based measurements
  • 2008
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 35:17, s. L17S03-
  • Tidskriftsartikel (refereegranskat)abstract
    • The THEMIS spacecraft encountered a Hot Flow Anomaly ( HFA) on the dusk flank of the Earth's bow shock on 4 July 2007, observing it on both sides of the shock. Meanwhile, the THEMIS ground magnetometers traced the progress of the associated Magnetic Impulse Event along the dawn flank of the magnetosphere, providing a unique opportunity to study the transmission of the HFA through the shock and the subsequent downstream response. THEMIS-A, in the solar wind, observed classic HFA signatures. Isotropic electron distributions inside the upstream HFA are attributed to the action of the electron firehose instability. THEMIS-E, just downstream, observed a much more complex disturbance with the pressure perturbation decoupled from the underlying discontinuity. Simple calculations show that the pressure perturbation would be capable of significantly changing the magnetopause location, which is confirmed by the ground-based observations.
  •  
10.
  • Roux, A., et al. (författare)
  • A mechanism for heating electrons in the magnetopause current layer and adjacent regions
  • 2011
  • Ingår i: Annales Geophysicae. - : Copernicus GmbH. - 0992-7689 .- 1432-0576. ; 29:12, s. 2305-2316
  • Tidskriftsartikel (refereegranskat)abstract
    • Taking advantage of the string-of-pearls configuration of the five THEMIS spacecraft during the early phase of their mission, we analyze observations taken simultaneously in the magnetosheath, the magnetopause current layer and the magnetosphere. We find that electron heating coincides with ultra low frequency waves. It seems unlikely that electrons are heated by these waves because the electron thermal velocity is much larger than the Alfven velocity (V-a). In the short transverse scale (k (perpendicular to) rho(i) >> 1) regime, however, short scale Alfven waves (SSAWs) have parallel phase velocities much larger than V-a and are shown to interact, via Landau damping, with electrons thereby heating them. The origin of these waves is also addressed. THEMIS data give evidence for sharp spatial gradients in the magnetopause current layer where the highest amplitude waves have a large component delta B perpendicular to the magnetopause and k azimuthal. We suggest that SSAWs are drift waves generated by temperature gradients in a high beta, large T-i/T-e magnetopause current layer. Therefore these waves are called SSDAWs, where D stands for drift. SSDAWs have large k(perpendicular to) and therefore a large Doppler shift that can exceed their frequencies in the plasma frame. Because they have a small but finite parallel electric field and a magnetic component perpendicular to the magnetopause, they could play a key role at reconnecting magnetic field lines. The growth rate depends strongly on the scale of the gradients; it becomes very large when the scale of the electron temperature gradient gets below 400 km. Therefore SSDAW's are expected to limit the sharpness of the gradients, which might explain why Berchem and Russell (1982) found that the average magnetopause current sheet thickness to be similar to 400-1000 km (similar to 500 km in the near equatorial region).
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 16

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy