SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(D'Amato Mauro) ;hsvcat:1"

Sökning: WFRF:(D'Amato Mauro) > Naturvetenskap

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Klimovich, Alexander, et al. (författare)
  • Prototypical pacemaker neurons interact with the resident microbiota
  • 2020
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 117:30, s. 17854-17863
  • Tidskriftsartikel (refereegranskat)abstract
    • Pacemaker neurons exert control over neuronal circuit function by their intrinsic ability to generate rhythmic bursts of action potential. Recent work has identified rhythmic gut contractions in human, mice, and hydra to be dependent on both neurons and the resident microbiota. However, little is known about the evolutionary origin of these neurons and their interaction with microbes. In this study, we identified and functionally characterized prototypical ANO/SCN/TRPMion channel-expressing pacemaker cells in the basal metazoan Hydra by using a combination of single-cell transcriptomics, immunochemistry, and functional experiments. Unexpectedly, these prototypical pacemaker neurons express a rich set of immune-related genes mediating their interaction with the microbial environment. Furthermore, functional experiments gave a strong support to a model of the evolutionary emergence of pacemaker cells as neurons using components of innate immunity to interact with the microbial environment and ion channels to generate rhythmic contractions.
  •  
2.
  • Kurilshikov, Alexander, et al. (författare)
  • Large-scale association analyses identify host factors influencing human gut microbiome composition
  • 2021
  • Ingår i: Nature Genetics. - : Nature Publishing Group. - 1061-4036 .- 1546-1718. ; 53:2, s. 156-165
  • Tidskriftsartikel (refereegranskat)abstract
    • To study the effect of host genetics on gut microbiome composition, the MiBioGen consortium curated and analyzed genome-wide genotypes and 16S fecal microbiome data from 18,340 individuals (24 cohorts). Microbial composition showed high variability across cohorts: only 9 of 410 genera were detected in more than 95% of samples. A genome-wide association study of host genetic variation regarding microbial taxa identified 31 loci affecting the microbiome at a genome-wide significant (P < 5 x 10(-8)) threshold. One locus, the lactase (LCT) gene locus, reached study-wide significance (genome-wide association study signal: P = 1.28 x 10(-20)), and it showed an age-dependent association with Bifidobacterium abundance. Other associations were suggestive (1.95 x 10(-10) < P < 5 x 10(-8)) but enriched for taxa showing high heritability and for genes expressed in the intestine and brain. A phenome-wide association study and Mendelian randomization identified enrichment of microbiome trait loci in the metabolic, nutrition and environment domains and suggested the microbiome might have causal effects in ulcerative colitis and rheumatoid arthritis.
  •  
3.
  • Assadi, Ghazaleh, et al. (författare)
  • Functional Analyses of the Crohn's Disease Risk Gene LACC1
  • 2016
  • Ingår i: PLOS ONE. - San Francisco, USA : Public Library of Science. - 1932-6203. ; 11:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Genetic variation in the Laccase (multicopper oxidoreductase) domain-containing 1 (LACC1) gene has been shown to affect the risk of Crohn's disease, leprosy and, more recently, ulcerative colitis and juvenile idiopathic arthritis. LACC1 function appears to promote fatty-acid oxidation, with concomitant inflammasome activation, reactive oxygen species production, and anti-bacterial responses in macrophages. We sought to contribute to elucidating LACC1 biological function by extensive characterization of its expression in human tissues and cells, and through preliminary analyses of the regulatory mechanisms driving such expression.Methods: We implemented Western blot, quantitative real-time PCR, immunofluorescence microscopy, and flow cytometry analyses to investigate fatty acid metabolism-immune nexus (FAMIN; the LACC1 encoded protein) expression in subcellular compartments, cell lines and relevant human tissues. Gene-set enrichment analyses were performed to initially investigate modulatory mechanisms of LACC1 expression. A small-interference RNA knockdown in vitro model system was used to study the effect of FAMIN depletion on peroxisome function.Results: FAMIN expression was detected in macrophage-differentiated THP-1 cells and several human tissues, being highest in neutrophils, monocytes/macrophages, myeloid and plasmacytoid dendritic cells among peripheral blood cells. Subcellular co-localization was exclusively confined to peroxisomes, with some additional positivity for organelle endomembrane structures. LACC1 co-expression signatures were enriched for genes involved in peroxisome proliferator-activated receptors (PPAR) signaling pathways, and PPAR ligands downregulated FAMIN expression in in vitro model systems.Conclusion: FAMIN is a peroxisome-associated protein with primary role(s) in macrophages and other immune cells, where its metabolic functions may be modulated by PPAR signaling events. However, the precise molecular mechanisms through which FAMIN exerts its biological effects in immune cells remain to be elucidated.
  •  
4.
  •  
5.
  •  
6.
  • Rivas, Manuel A., et al. (författare)
  • A protein-truncating R179X variant in RNF186 confers protection against ulcerative colitis
  • 2016
  • Ingår i: Nature Communications. - London, United Kingdom : Nature Publishing Group. - 2041-1723. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • Protein-truncating variants protective against human disease provide in vivo validation of therapeutic targets. Here we used targeted sequencing to conduct a search for protein-truncating variants conferring protection against inflammatory bowel disease exploiting knowledge of common variants associated with the same disease. Through replication genotyping and imputation we found that a predicted protein-truncating variant (rs36095412, p.R179X, genotyped in 11,148 ulcerative colitis patients and 295,446 controls, MAF=up to 0.78%) in RNF186, a single-exon ring finger E3 ligase with strong colonic expression, protects against ulcerative colitis (overall P=6.89 × 10(-7), odds ratio=0.30). We further demonstrate that the truncated protein exhibits reduced expression and altered subcellular localization, suggesting the protective mechanism may reside in the loss of an interaction or function via mislocalization and/or loss of an essential transmembrane domain.
  •  
7.
  • Stenlund, Hans, et al. (författare)
  • Metabolic Profiling of Plasma in Patients with Irritable Bowel Syndrome after a 4-Week Starch- and Sucrose-Reduced Diet
  • 2021
  • Ingår i: Metabolites. - : MDPI. - 2218-1989 .- 2218-1989. ; 11:7
  • Tidskriftsartikel (refereegranskat)abstract
    • A 4-week dietary intervention with a starch- and sucrose-restricted diet (SSRD) was conducted in patients with irritable bowel syndrome (IBS) to examine the metabolic profile in relation to nutrient intake and gastrointestinal symptoms. IBS patients were randomized to SSRD intervention (n = 69) or control continuing with their ordinary food habits (n = 22). Food intake was registered and the questionnaires IBS-symptoms severity scale (IBS-SSS) and visual analog scale for IBS (VAS-IBS) were completed. Metabolomics untargeted analysis was performed by gas chromatography mass spectrometry (GC-MS) and liquid chromatography mass spectrometry (LC-MS) in positive and negative ionization modes. SSRD led to marked changes in circulating metabolite concentrations at the group level, most prominent for reduced starch intake and increased polyunsaturated fat, with small changes in the control group. On an individual level, the correlations were weak. The marked reduction in gastrointestinal symptoms did not correlate with the metabolic changes. SSRD was observed by clear metabolic effects mainly related to linoleic acid metabolism, fatty acid biosynthesis, and beta-oxidation.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7
Typ av publikation
tidskriftsartikel (7)
Typ av innehåll
refereegranskat (6)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
D'Amato, Mauro (7)
Halfvarson, Jonas, 1 ... (3)
Agréus, Lars (2)
Kontula, Kimmo (1)
Stenlund, Hans (1)
Engstrand, Lars (1)
visa fler...
Andersson, Anders F. (1)
Laurencikiene, Jurga (1)
Greco, Dario (1)
Wang, M. H. (1)
Barrett, J (1)
Campbell, Harry (1)
Talley, Nicholas J. (1)
Roth, Bodil (1)
Wang, Jun (1)
Ohlsson, Bodil (1)
Andreasson, Anna (1)
Laakso, Markku (1)
Pedersen, Oluf (1)
Hansen, Torben (1)
Demirkan, Ayse (1)
van Duijn, Cornelia ... (1)
Boehnke, Michael (1)
Jorgensen, Torben (1)
Ahmad, Tariq (1)
Jonsdottir, Ingileif (1)
Thorsteinsdottir, Un ... (1)
Stefansson, Kari (1)
Percipalle, Piergior ... (1)
Willemsen, Gonneke (1)
de Geus, Eco J. C. (1)
Boomsma, Dorret I. (1)
Spector, Tim D. (1)
Hedin, Charlotte (1)
Quince, Christopher (1)
Färkkilä, Martti (1)
Joossens, Marie (1)
Vermeire, Severine (1)
Rivas, Manuel A. (1)
Daly, Mark J. (1)
Sulem, Patrick (1)
Gudbjartsson, Daniel (1)
Törkvist, Leif (1)
Andreasson, Anna N. (1)
Vieira-Silva, Sara (1)
Falony, Gwen (1)
Raes, Jeroen (1)
Schepis, Danika (1)
Paterson, Andrew D (1)
Rivadeneira, Fernand ... (1)
visa färre...
Lärosäte
Karolinska Institutet (7)
Stockholms universitet (4)
Örebro universitet (3)
Kungliga Tekniska Högskolan (2)
Umeå universitet (1)
Uppsala universitet (1)
visa fler...
Linköpings universitet (1)
Lunds universitet (1)
visa färre...
Språk
Engelska (7)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (4)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy