SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Díez del Molino David) ;pers:(Kutschera Verena E.)"

Sökning: WFRF:(Díez del Molino David) > Kutschera Verena E.

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Dussex, Nicolas, et al. (författare)
  • Population genomics of the critically endangered kākāpō
  • 2021
  • Ingår i: Cell Genomics. - : Elsevier BV. - 2666-979X. ; 1:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Summary The kākāpō is a flightless parrot endemic to New Zealand. Once common in the archipelago, only 201 individuals remain today, most of them descending from an isolated island population. We report the first genome-wide analyses of the species, including a high-quality genome assembly for kākāpō, one of the first chromosome-level reference genomes sequenced by the Vertebrate Genomes Project (VGP). We also sequenced and analyzed 35 modern genomes from the sole surviving island population and 14 genomes from the extinct mainland population. While theory suggests that such a small population is likely to have accumulated deleterious mutations through genetic drift, our analyses on the impact of the long-term small population size in kākāpō indicate that present-day island kākāpō have a reduced number of harmful mutations compared to mainland individuals. We hypothesize that this reduced mutational load is due to the island population having been subjected to a combination of genetic drift and purging of deleterious mutations, through increased inbreeding and purifying selection, since its isolation from the mainland ∼10,000 years ago. Our results provide evidence that small populations can survive even when isolated for hundreds of generations. This work provides key insights into kākāpō breeding and recovery and more generally into the application of genetic tools in conservation efforts for endangered species.
  •  
2.
  • Kutschera, Verena E., et al. (författare)
  • GenErode : a bioinformatics pipeline to investigate genome erosion in endangered and extinct species
  • 2022
  • Ingår i: BMC Bioinformatics. - : Springer Nature. - 1471-2105. ; 23:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Many wild species have suffered drastic population size declines over the past centuries, which have led to 'genomic erosion' processes characterized by reduced genetic diversity, increased inbreeding, and accumulation of harmful mutations. Yet, genomic erosion estimates of modern-day populations often lack concordance with dwindling population sizes and conservation status of threatened species. One way to directly quantify the genomic consequences of population declines is to compare genome-wide data from pre-decline museum samples and modern samples. However, doing so requires computational data processing and analysis tools specifically adapted to comparative analyses of degraded, ancient or historical, DNA data with modern DNA data as well as personnel trained to perform such analyses. Results: Here, we present a highly flexible, scalable, and modular pipeline to compare patterns of genomic erosion using samples from disparate time periods. The GenErode pipeline uses state-of-the-art bioinformatics tools to simultaneously process whole-genome re-sequencing data from ancient/historical and modern samples, and to produce comparable estimates of several genomic erosion indices. No programming knowledge is required to run the pipeline and all bioinformatic steps are well-documented, making the pipeline accessible to users with different backgrounds. GenErode is written in Snakemake and Python3 and uses Conda and Singularity containers to achieve reproducibility on high-performance compute clusters. The source code is freely available on GitHub (https://github.com/NBISweden/GenErode). Conclusions: GenErode is a user-friendly and reproducible pipeline that enables the standardization of genomic erosion indices from temporally sampled whole genome re-sequencing data.
  •  
3.
  • Saha, Atal, et al. (författare)
  • Monitoring genome-wide diversity over contemporary time with new indicators applied to Arctic charr populations
  • 2024
  • Ingår i: Conservation Genetics. - 1566-0621 .- 1572-9737. ; 25, s. 513-531
  • Tidskriftsartikel (refereegranskat)abstract
    • Genetic diversity is fundamental to the adaptive potential and survival of species. Although its importance has long been recognized in science, it has a history of neglect within policy, until now. The new Global Biodiversity Framework recently adopted by the Convention on Biological Diversity, states that genetic diversity must be maintained at levels assuring adaptive potential of populations, and includes metrics for systematic monitoring of genetic diversity in so called indicators. Similarly, indicators for genetic diversity are being developed at national levels. Here, we apply new indicators for Swedish national use to one of the northernmost salmonid fishes, the Arctic charr (Salvelinus alpinus). We sequence whole genomes to monitor genetic diversity over four decades in three landlocked populations inhabiting protected alpine lakes in central Sweden. We find levels of genetic diversity, inbreeding and load to differ among lakes but remain stable over time. Effective population sizes are generally small (< 500), suggesting a limited ability to maintain adaptive variability if genetic exchange with nearby populations became eliminated. We identify genomic regions potentially shaped by selection; SNPs exhibiting population divergence exceeding expectations under drift and a putative selective sweep acting within one lake to which the competitive brown trout (Salmo trutta) was introduced during the sampling period. Identified genes appear involved in immunity and salinity tolerance. Present results suggest that genetically vulnerable populations of Arctic charr have maintained neutral and putatively adaptive genetic diversity despite small effective sizes, attesting the importance of continued protection and assurance of gene flow among populations.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy