SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Dahlen Barbro) ;hsvcat:3"

Sökning: WFRF:(Dahlen Barbro) > Medicin och hälsovetenskap

  • Resultat 1-10 av 21
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Hou, Ruihua, et al. (författare)
  • The role of inflammation in anxiety and depression in the European U-BIOPRED asthma cohorts
  • 2023
  • Ingår i: Brain, behavior, and immunity. - : Academic Press. - 0889-1591 .- 1090-2139. ; 111, s. 249-258
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Growing evidence indicates high comorbid anxiety and depression in patients with asthma. However, the mechanisms underlying this comorbid condition remain unclear. The aim of this study was to investigate the role of inflammation in comorbid anxiety and depression in three asthma patient cohorts of the Unbiased Biomarkers for the Prediction of Respiratory Disease Outcomes (U-BIOPRED) project. Methods: U-BIOPRED was conducted by a European Union consortium of 16 academic institutions in 11 European countries. A subset dataset from subjects with valid anxiety and depression measures and a large blood biomarker dataset were analysed, including 198 non-smoking patients with severe asthma (SAn), 65 smoking patients with severe asthma (SAs), 61 non-smoking patients with mild-to-moderate asthma (MMA), and 20 healthy non-smokers (HC). The Hospital Anxiety and Depression Scale was used to measure anxiety and depression and a series of inflammatory markers were analysed by the SomaScan v3 platform (SomaLogic, Boulder, Colo). ANOVA and the Kruskal-Wallis test were used for multiple-group comparisons as appropriate. Results: There were significant group effects on anxiety and depression among the four cohort groups (p < 0.05). Anxiety and depression of SAn and SAs groups were significantly higher than that of MMA and HC groups (p < 0.05. There were significant differences in serum IL6, MCP1, CCL18, CCL17, IL8, and Eotaxin among the four groups (p < 0.05). Depression was significantly associated with IL6, MCP1, CCL18 level, and CCL17; whereas anxiety was associated with CCL17 only (p < 0.05). Conclusions: The current study suggests that severe asthma patients are associated with higher levels of anxiety and depression, and inflammatory responses may underlie this comorbid condition.
  •  
2.
  •  
3.
  •  
4.
  • Emma, Rosalia, et al. (författare)
  • Enhanced oxidative stress in smoking and ex-smoking severe asthma in the U-BIOPRED cohort
  • 2018
  • Ingår i: PLOS ONE. - : Public Library Science. - 1932-6203. ; 13:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Oxidative stress is believed to be a major driver of inflammation in smoking asthmatics. The U-BIOPRED project recruited a cohort of Severe Asthma smokers/ex-smokers (SAs/ex) and non-smokers (SAn) with extensive clinical and biomarker information enabling characterization of these subjects. We investigated oxidative stress in severe asthma subjects by analysing urinary 8-iso-PGF(2 alpha) and the mRNA-expression of the main pro-oxidant (NOX2; NOSs) and anti-oxidant (SODs; CAT; GPX1) enzymes in the airways of SAs/ex and SAn. All the severe asthma U-BIOPRED subjects were further divided into current smokers with severe asthma (CSA), ex-smokers with severe asthma (ESA) and non-smokers with severe asthma (NSA) to deepen the effect of active smoking. Clinical data, urine and sputum were obtained from severe asthma subjects. A bronchoscopy to obtain bronchial biopsy and brushing was performed in a subset of subjects. The main clinical data were analysed for each subset of subjects (urine-8-iso-PGF(2 alpha); IS-transcriptomics; BB-transcriptomics; BBrtranscriptomics). Urinary 8-iso-PGF(2 alpha) was quantified using mass spectrometry. Sputum, bronchial biopsy and bronchial brushing were processed for mRNA expression microarray analysis. Urinary 8-iso-PGF(2 alpha) was increased in SAs/ex, median (IQR) = 31.7 (24.5 +/- 44.7) ng/mmol creatinine, compared to SAn, median (IQR) = 26.6 (19.6 +/- 36.6) ng/mmol creatinine (p< 0.001), and in CSA, median (IQR) = 34.25 (24.4 +/- 47.7), vs. ESA, median (IQR) = 29.4 (22.3 +/- 40.5), and NSA, median (IQR) = 26.5 (19.6 +/- 16.6) ng/mmol creatinine (p = 0.004). Sputum mRNA expression of NOX2 was increased in SAs/ex compared to SAn (probe sets 203922_PM_s_at fold-change = 1.05 p = 0.006; 203923_PM_s_at fold-change = 1.06, p = 0.003; 233538_PM_s_at fold-change = 1.06, p = 0.014). The mRNA expression of antioxidant enzymes were similar between the two severe asthma cohorts in all airway samples. NOS2 mRNA expression was decreased in bronchial brushing of SAs/ex compared to SAn (fold-change = -1.10; p = 0.029). NOS2 mRNA expression in bronchial brushing correlated with FeNO (Kendal's Tau = 0.535; p< 0.001). From clinical and inflammatory analysis, FeNO was lower in CSA than in ESA in all the analysed subject subsets (p< 0.01) indicating an effect of active smoking. Results about FeNO suggest its clinical limitation, as inflammation biomarker, in severe asthma active smokers. These data provide evidence of greater systemic oxidative stress in severe asthma smokers as reflected by a significant changes of NOX2 mRNA expression in the airways, together with elevated urinary 8-iso-PGF(2 alpha) in the smokers/ex-smokers group.
  •  
5.
  • Gülen, Theo, et al. (författare)
  • Distinct plasma biomarkers confirm the diagnosis of mastocytosis and identify increased risk of anaphylaxis
  • 2021
  • Ingår i: Journal of Allergy and Clinical Immunology. - : Elsevier. - 0091-6749 .- 1097-6825. ; 148:3, s. 889-894
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Mastocytosis encompasses a heterogeneous group of disorders characterized by accumulation of clonal mast cells (MCs) in the skin and/or internal organs. Patients typically present with a broad variety of recurrent mediator-related clinical symptoms, including severe anaphylaxis. However, not all patients with mastocytosis experience anaphylactic reactions.Objective: We sought to identify disease-specific biomarkers in plasma that could be used to predict patients with mastocytosis with increased risk of anaphylaxis.Methods: Nineteen patients (>_18 years) and 2 control groups (11 subjects with allergic asthma and 13 healthy volunteers without history of atopy) were recruited. In total, 248 plasma proteins were analyzed by Proximity Extension Assay using Olink Proseek Multiplex panels.Results: We identified 4 novel proteins, in addition to tryptase, E-selectin, adrenomedullin, T-cell immunoglobulin, and mucin domain 1, and CUB domain-containing protein 1/CD138 to be significantly increased in patients with mastocytosis compared with both patients with asthma and healthy controls. Furthermore, we investigated whether we could discriminate between patients with mastocytosis with or without anaphylaxis. In addition to tryptase, we identified 3 novel proteins, that is, allergin-1, pregnancy-associated plasma protein-A, and galectin-3, with significantly different levels in patients with mastocytosis with anaphylaxis compared with those without anaphylaxis.Conclusions: Newly identified proteomic biomarkers may be used to predict patients with mastocytosis with increased risk of anaphylaxis.
  •  
6.
  •  
7.
  • Johnsson, Anna-Karin, et al. (författare)
  • Selective inhibition of prostaglandin D-2 biosynthesis in human mast cells to overcome need for multiple receptor antagonists : Biochemical consequences
  • 2021
  • Ingår i: Clinical and Experimental Allergy. - : John Wiley & Sons. - 0954-7894 .- 1365-2222. ; 51:4, s. 594-603
  • Tidskriftsartikel (refereegranskat)abstract
    • Background The major mast cell prostanoid PGD(2) is targeted for therapy of asthma and other diseases, because the biological actions include bronchoconstriction, vasodilation and regulation of immune cells mediated by three different receptors. It is not known if the alternative to selectively inhibit the biosynthesis of PGD(2) affects release of other prostanoids in human mast cells. Objectives To determine the biochemical consequences of inhibition of the hematopoietic prostaglandin D synthase (hPGDS) PGD(2) in human mast cells. Methods Four human mast cell models, LAD2, cord blood derived mast cells (CBMC), peripheral blood derived mast cells (PBMC) and human lung mast cells (HLMC), were activated by anti-IgE or ionophore A23187. Prostanoids were measured by UPLC-MS/MS. Results All mast cells almost exclusively released PGD(2) when activated by anti-IgE or A23187. The biosynthesis was in all four cell types entirely initiated by COX-1. When pharmacologic inhibition of hPGDS abolished formation of PGD(2), PGE(2) was detected and release of TXA(2) increased. Conversely, when the thromboxane synthase was inhibited, levels of PGD(2) increased. Adding exogenous PGH(2) confirmed predominant conversion to PGD(2) under control conditions, and increased levels of TXB2 and PGE(2) when hPGDS was inhibited. However, PGE(2) was formed by non-enzymatic degradation. Conclusions Inhibition of hPGDS effectively blocks mast cell dependent PGD(2) formation. The inhibition was associated with redirected use of the intermediate PGH(2) and shunting into biosynthesis of TXA(2). However, the levels of TXA(2) did not reach those of PGD(2) in naive cells. It remains to determine if this diversion occurs in vivo and has clinical relevance.
  •  
8.
  • Kolmert, Johan, et al. (författare)
  • Urinary Leukotriene E-4 and Prostaglandin D-2 Metabolites Increase in Adult and Childhood Severe Asthma Characterized by Type 2 Inflammation A Clinical Observational Study
  • 2021
  • Ingår i: American Journal of Respiratory and Critical Care Medicine. - NEW YORK, USA : AMER THORACIC SOC. - 1073-449X .- 1535-4970. ; 203:1, s. 37-53
  • Tidskriftsartikel (refereegranskat)abstract
    • Rationale: New approaches are needed to guide personalized treatment of asthma. Objectives: To test if urinary eicosanoid metabolites can direct asthma phenotyping. Methods: Urinary metabolites of prostaglandins (PGs), cysteinyl leukotrienes (CysLTs), and isoprostanes were quantified in the U-BIOPRED (Unbiased Biomarkers for the Prediction of Respiratory Diseases Outcomes) study including 86 adults with mild-to-moderate asthma (MMA), 411 with severe asthma (SA), and 100 healthy control participants. Validation was performed internally in 302 participants with SA followed up after 12-18 months and externally in 95 adolescents with asthma. Measurement and Main Results: Metabolite concentrations in healthy control participants were unrelated to age, body mass index, and sex, except for the PGE(2) pathway. Eicosanoid concentrations were generally greater in participants with MMA relative to healthy control participants, with further elevations in participants with SA. However, PGE(2) metabolite concentrations were either the same or lower in male nonsmokers with asthma than in healthy control participants. Metabolite concentrations were unchanged in those with asthma who adhered to oral corticosteroid treatment as documented by urinary prednisolone detection, whereas those with SA treated with omalizumab had lower concentrations of LTE4 and the PGD(2) metabolite 2,3-dinor-11 beta-PGF(2 alpha). High concentrations of LTE4 and PGD(2) metabolites were associated with lower lung function and increased amounts of exhaled nitric oxide and eosinophil markers in blood, sputum, and urine in U-BIOARED participants and in adolescents with asthma. These type 2 (T2) asthma associations were reproduced in the follow-up visit of the U-BIOPRED study and were found to be as sensitive to detect T2 inflammation as the established biomarkers. Conclusions: Monitoring of urinary eicosanoids can identify T2 asthma and introduces a new noninvasive approach for molecular phenotyping of adult and adolescent asthma.
  •  
9.
  • Kuo, Chih-Hsi Scott, et al. (författare)
  • A transcriptome-driven analysis of epithelial brushings and bronchial biopsies to define asthma phenotypes in U-BIOPRED
  • 2017
  • Ingår i: American Journal of Respiratory and Critical Care Medicine. - 1073-449X .- 1535-4970. ; 194:4, s. 443-455
  • Tidskriftsartikel (refereegranskat)abstract
    • RATIONALE AND OBJECTIVES: Asthma is a heterogeneous disease driven by diverse immunologic and inflammatory mechanisms. We used transcriptomic profiling of airway tissues to help define asthma phenotypes.METHODS: The transcriptome from bronchial biopsies and epithelial brushings of 107 moderate-to-severe asthmatics were annotated by gene-set variation analysis (GSVA) using 42 gene-signatures relevant to asthma, inflammation and immune function. Topological data analysis (TDA) of clinical and histological data was used to derive clusters and the nearest shrunken centroid algorithm used for signature refinement.RESULTS: 9 GSVA signatures expressed in bronchial biopsies and airway epithelial brushings distinguished two distinct asthma subtypes associated with high expression of T-helper type 2 (Th-2) cytokines and lack of corticosteroid response (Group 1 and Group 3). Group 1 had the highest submucosal eosinophils, high exhaled nitric oxide (FeNO) levels, exacerbation rates and oral corticosteroid (OCS) use whilst Group 3 patients showed the highest levels of sputum eosinophils and had a high BMI. In contrast, Group 2 and Group 4 patients had an 86% and 64% probability of having non-eosinophilic inflammation. Using machine-learning tools, we describe an inference scheme using the currently-available inflammatory biomarkers sputum eosinophilia and exhaled nitric oxide levels along with OCS use that could predict the subtypes of gene expression within bronchial biopsies and epithelial cells with good sensitivity and specificity.CONCLUSION: This analysis demonstrates the usefulness of a transcriptomic-driven approach to phenotyping that segments patients who may benefit the most from specific agents that target Th2-mediated inflammation and/or corticosteroid insensitivity.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 21
Typ av publikation
tidskriftsartikel (19)
annan publikation (1)
konferensbidrag (1)
Typ av innehåll
refereegranskat (16)
övrigt vetenskapligt/konstnärligt (5)
Författare/redaktör
Dahlén, Barbro (20)
Dahlen, Sven-Erik (10)
Djukanovic, Ratko (9)
Sterk, Peter J. (8)
Krug, Norbert (7)
Adcock, Ian M. (7)
visa fler...
Kolmert, Johan (6)
Sousa, Ana R. (5)
Chanez, Pascal (5)
Sandström, Thomas, 1 ... (5)
Howarth, Peter (5)
Chung, Kian Fan (5)
Nilsson, Gunnar (5)
Auffray, Charles (4)
Caruso, Massimo (4)
Horvath, Ildiko (4)
Shaw, Dominick E. (4)
Montuschi, Paolo (4)
Fowler, Stephen J. (4)
Sanak, Marek (4)
Wheelock, Craig E. (4)
Pandis, Ioannis (4)
Bakke, Per S. (4)
Gulen, Theo (4)
James, Anna (4)
Bjermer, Leif (3)
De Meulder, Bertrand (3)
Shaw, Dominick (3)
Ericsson, Magnus (3)
Andersson, Lars I. (3)
Wilson, Susan J. (3)
Janson, Christer (2)
Riley, John H. (2)
Bates, Stewart (2)
Corfield, Julie (2)
Nilsson, Peter (2)
Sander, Birgitta (2)
Hägglund, Hans (2)
Fleming, Louise (2)
Pavlidis, Stelios (2)
Hedlin, Gunilla (2)
Bossios, Apostolos (2)
Behndig, Annelie F., ... (2)
Lefaudeux, Diane (2)
Geiser, Thomas (2)
Rowe, Anthony (2)
Ekoff, Maria (2)
Yasinska, Valentyna (2)
Lazarinis, Nikolaos (2)
Mikus, Maria (2)
visa färre...
Lärosäte
Karolinska Institutet (18)
Umeå universitet (9)
Uppsala universitet (8)
Lunds universitet (3)
Göteborgs universitet (2)
Kungliga Tekniska Högskolan (2)
Språk
Engelska (20)
Svenska (1)
Forskningsämne (UKÄ/SCB)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy