SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Dahlman Ingrid) ;lar1:(umu)"

Sökning: WFRF:(Dahlman Ingrid) > Umeå universitet

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Dahlman, Ingrid, et al. (författare)
  • A unique role of monocyte chemoattractant protein 1 among chemokines in adipose tissue of obese subjects
  • 2005
  • Ingår i: Journal of Clinical Endocrinology and Metabolism. - : Endocrine Society. - 0021-972X .- 1945-7197. ; 90:10, s. 5834-5840
  • Tidskriftsartikel (refereegranskat)abstract
    • Context: Low-grade inflammation in adipose tissue may contribute to insulin resistance in obesity. However, the roles of individual inflammatory mediators in adipose tissue are poorly understood. Objectives: The objective of this study was to determine which inflammation markers are most overexpressed at the gene level in adipose tissue in human obesity and how this relates to corresponding protein secretion. Design: We examined gene expression profiles in 17 lean and 20 obese subjects. The secretory pattern of relevant corresponding proteins was examined in human sc adipose tissue or isolated fat cells in vitro and in vivo in several obese or lean cohorts. Results: In ranking gene expression, defined pathways associated with obesity and immune and defense responses scored high. Among seven markedly overexpressed chemokines, only monocyte chemoattractant protein 1 (MCP1) was released from adipose tissue and isolated fat cells in vitro. In obesity, the secretion and expression of MCP1 in adipose tissue pieces were more than 6- and 2-fold increased, respectively, but there was no change in circulating MCP1 levels. There was no net release of MCP1, but there was a net release of leptin, in vivo from adipose tissue into the circulation. Conclusions: Obesity is associated with the increased expression of several chemokine genes in adipose tissue. However, only MCP1 is secreted into the extracellular space, where it primarily acts as a local factor, because little or no spillover into the circulation occurs. MCP1 influences the function of adipocytes, is a recruitment factor for macrophages, and may be a crucial link among chemokines between adipose tissue inflammation and insulin resistance.
  •  
2.
  • Herdenberg, Carl, et al. (författare)
  • LRIG proteins regulate lipid metabolism via BMP signaling and affect the risk of type 2 diabetes
  • 2021
  • Ingår i: Communications Biology. - : Springer Science and Business Media LLC. - 2399-3642. ; 4
  • Tidskriftsartikel (refereegranskat)abstract
    • Leucine-rich repeats and immunoglobulin-like domains (LRIG) proteins have been implicated as regulators of growth factor signaling; however, the possible redundancy among mammalian LRIG1, LRIG2, and LRIG3 has hindered detailed elucidation of their physiological functions. Here, we show that Lrig-null mouse embryonic fibroblasts (MEFs) are deficient in adipogenesis and bone morphogenetic protein (BMP) signaling. In contrast, transforming growth factor-beta (TGF-β) and receptor tyrosine kinase (RTK) signaling appeared unaltered in Lrig-null cells. The BMP signaling defect was rescued by ectopic expression of LRIG1 or LRIG3 but not by expression of LRIG2. Caenorhabditis elegans with mutant LRIG/sma-10 variants also exhibited a lipid storage defect. Human LRIG1 variants were strongly associated with increased body mass index (BMI) yet protected against type 2 diabetes; these effects were likely mediated by altered adipocyte morphology. These results demonstrate that LRIG proteins function as evolutionarily conserved regulators of lipid metabolism and BMP signaling and have implications for human disease.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy