SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Das K.) ;mspu:(researchreview)"

Sökning: WFRF:(Das K.) > Forskningsöversikt

  • Resultat 1-10 av 17
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abelev, B., et al. (författare)
  • Performance of the ALICE experiment at the CERN LHC
  • 2014
  • Ingår i: International Journal of Modern Physics A. - 0217-751X. ; 29:24
  • Forskningsöversikt (refereegranskat)abstract
    • ALICE is the heavy-ion experiment at the CERN Large Hadron Collider. The experiment continuously took data during the first physics campaign of the machine from fall 2009 until early 2013, using proton and lead-ion beams. In this paper we describe the running environment and the data handling procedures, and discuss the performance of the ALICE detectors and analysis methods for various physics observables.
  •  
2.
  • Aamodt, K., et al. (författare)
  • The ALICE experiment at the CERN LHC
  • 2008
  • Ingår i: Journal of Instrumentation. - 1748-0221. ; 3:S08002
  • Forskningsöversikt (refereegranskat)abstract
    • ALICE (A Large Ion Collider Experiment) is a general-purpose, heavy-ion detector at the CERN LHC which focuses on QCD, the strong-interaction sector of the Standard Model. It is designed to address the physics of strongly interacting matter and the quark-gluon plasma at extreme values of energy density and temperature in nucleus-nucleus collisions. Besides running with Pb ions, the physics programme includes collisions with lighter ions, lower energy running and dedicated proton-nucleus runs. ALICE will also take data with proton beams at the top LHC energy to collect reference data for the heavy-ion programme and to address several QCD topics for which ALICE is complementary to the other LHC detectors. The ALICE detector has been built by a collaboration including currently over 1000 physicists and engineers from 105 Institutes in 30 countries, Its overall dimensions are 16 x 16 x 26 m(3) with a total weight of approximately 10 000 t. The experiment consists of 18 different detector systems each with its own specific technology choice and design constraints, driven both by the physics requirements and the experimental conditions expected at LHC. The most stringent design constraint is to cope with the extreme particle multiplicity anticipated in central Pb-Pb collisions. The different subsystems were optimized to provide high-momentum resolution as well as excellent Particle Identification (PID) over a broad range in momentum, up to the highest multiplicities predicted for LHC. This will allow for comprehensive studies of hadrons, electrons, muons, and photons produced in the collision of heavy nuclei. Most detector systems are scheduled to be installed and ready for data taking by mid-2008 when the LHC is scheduled to start operation, with the exception of parts of the Photon Spectrometer (PHOS), Transition Radiation Detector (TRD) and Electro Magnetic Calorimeter (EMCal). These detectors will be completed for the high-luminosity ion run expected in 2010. This paper describes in detail the detector components as installed for the first data taking in the summer of 2008.
  •  
3.
  • Adler, S. S., et al. (författare)
  • High transverse momentum eta meson production in p+p, d+Au, and Au+Au collisions at root s(NN)=200 GeV
  • 2007
  • Ingår i: Physical Review C (Nuclear Physics). - 0556-2813. ; 75:2
  • Forskningsöversikt (refereegranskat)abstract
    • Inclusive transverse momentum spectra of eta mesons in the range p(T)approximate to 2-12 GeV/c have been measured at midrapidity (vertical bar eta vertical bar < 0.35) by the PHENIX experiment at RHIC in p+p,d+Au, and Au+Au collisions at root s(NN)=200 GeV. The eta mesons are reconstructed through their eta ->gamma gamma channel for the three colliding systems as well as through the eta ->pi(0)pi(+)pi(-) decay mode in p+p and d+Au collisions. The nuclear modification factor in d+Au collisions, R-dAu(p(T))approximate to 1.0-1.1, suggests at most only modest p(T) broadening ("Cronin enhancement"). In central Au+Au reactions, the eta yields are significantly suppressed, with R-AuAu(p(T))approximate to 0.2. The ratio of eta to pi(0) yields is approximately constant as a function of p(T) for the three colliding systems in agreement with the high-p(T) world average of R-eta/pi(0)approximate to 0.5 in hadron-hadron, hadron-nucleus, and nucleus-nucleus collisions for a wide range of center-of-mass energies (root sNN approximate to 3-1800 GeV) as well as, for high scaled momentum x(p), in e(+)e(-) annihilations at root s=91.2 GeV. These results are consistent with a scenario where high-p(T) eta production in nuclear collisions at the Relativistic Heavy Ion Collider is largely unaffected by initial-state effects but where light-quark mesons (pi(0),eta) are equally suppressed due to final-state interactions of the parent partons in the dense medium produced in Au+Au reactions.
  •  
4.
  • Abazov, V. M., et al. (författare)
  • Evidence for production of single top quarks
  • 2008
  • Ingår i: Physical Review D. - 1550-7998 .- 1550-2368. ; D:78, s. 012005-
  • Forskningsöversikt (refereegranskat)abstract
    • We present first evidence for the production of single top quarks in the D0 detector at the Fermilab Tevatron p (p) over bar collider. The standard model predicts that the electroweak interaction can produce a top quark together with an antibottom quark or light quark, without the antiparticle top-quark partner that is always produced from strong-coupling processes. Top quarks were first observed in pair production in 1995, and since then, single top-quark production has been searched for in ever larger data sets. In this analysis, we select events from a 0.9 fb(-1) data set that have an electron or muon and missing transverse energy from the decay of a W boson from the top-quark decay, and two, three, or four jets, with one or two of the jets identified as originating from a b hadron decay. The selected events are mostly backgrounds such as W + jets and t (t) over bar events, which we separate from the expected signals using three multivariate analysis techniques: boosted decision trees, Bayesian neural networks, and matrix-element calculations. A binned likelihood fit of the signal cross section plus background to the data from the combination of the results from the three analysis methods gives a cross section for single top-quark production of sigma(p (p) over bar -> tb + X, tqb + X) = 4.7 +/- 1.3 pb. The probability to measure a cross section at this value or higher in the absence of signal is 0.014%, corresponding to a 3.6 standard deviation significance. The measured cross section value is compatible at the 10% level with the standard model prediction for electroweak top-quark production. We use the cross section measurement to directly determine the Cabibbo-Kobayashi-Maskawa quark mixing matrix element that describes the Wtb coupling and find vertical bar V(tb)f(1)(L)vertical bar = 1.31(-0.21)(+0.25), where f(1)(L) is a generic vector coupling. This model-independent measurement translates into 0.68 <= 1 at the 95% C.L. in the standard model.
  •  
5.
  • Adcox, K, et al. (författare)
  • Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: Experimental evaluation by the PHENIX Collaboration
  • 2005
  • Ingår i: Nuclear Physics, Section A. - : Elsevier BV. - 0375-9474. ; 757:1-2, s. 184-283
  • Forskningsöversikt (refereegranskat)abstract
    • Extensive experimental data from high-energy nucleus-nucleus collisions were recorded using the PHENIX detector at the Relativistic Heavy Ion Collider (RHIC). The comprehensive set of measurements from the first three years of RHIC operation includes charged particle multiplicities, transverse energy, yield ratios and spectra of identified hadrons in a wide range of transverse momenta (PT), elliptic flow, two-particle correlations, nonstatistical fluctuations, and suppression of particle production at high PT. The results are examined with an emphasis on implications for the formation of a new state of dense matter. We find that the state of matter created at RHIC cannot be described in terms of ordinary color neutral hadrons.
  •  
6.
  • Rodriguez, D., et al. (författare)
  • MATS and LaSpec : High-precision experiments using ion traps and lasers at FAIR
  • 2010
  • Ingår i: The European physical journal. Special topics. - : Springer Science and Business Media LLC. - 1951-6355 .- 1951-6401. ; 183, s. 1-123
  • Forskningsöversikt (refereegranskat)abstract
    • Nuclear ground state properties including mass, charge radii, spins and moments can be determined by applying atomic physics techniques such as Penning-trap based mass spectrometry and laser spectroscopy. The MATS and LaSpec setups at the low-energy beamline at FAIR will allow us to extend the knowledge of these properties further into the region far from stability. The mass and its inherent connection with the nuclear binding energy is a fundamental property of a nuclide, a unique ""fingerprint"". Thus, precise mass values are important for a variety of applications, ranging from nuclear-structure studies like the investigation of shell closures and the onset of deformation, tests of nuclear mass models and mass formulas, to tests of the weak interaction and of the Standard Model. The required relative accuracy ranges from 10(-5) to below 10(-8) for radionuclides, which most often have half-lives well below 1 s. Substantial progress in Penning trap mass spectrometry has made this method a prime choice for precision measurements on rare isotopes. The technique has the potential to provide high accuracy and sensitivity even for very short-lived nuclides. Furthermore, ion traps can be used for precision decay studies and offer advantages over existing methods. With MATS (Precision Measurements of very short-lived nuclei using an Advanced Trapping System for highly-charged ions) at FAIR we aim to apply several techniques to very short-lived radionuclides: High-accuracy mass measurements, in-trap conversion electron and alpha spectroscopy, and trap-assisted spectroscopy. The experimental setup of MATS is a unique combination of an electron beam ion trap for charge breeding, ion traps for beam preparation, and a high-precision Penning trap system for mass measurements and decay studies. For the mass measurements, MATS offers both a high accuracy and a high sensitivity. A relative mass uncertainty of 10(-9) can be reached by employing highly-charged ions and a non-destructive Fourier-Transform Ion-Cyclotron-Resonance (FT-ICR) detection technique on single stored ions. This accuracy limit is important for fundamental interaction tests, but also allows for the study of the fine structure of the nuclear mass surface with unprecedented accuracy, whenever required. The use of the FT-ICR technique provides true single ion sensitivity. This is essential to access isotopes that are produced with minimum rates which are very often the most interesting ones. Instead of pushing for highest accuracy, the high charge state of the ions can also be used to reduce the storage time of the ions, hence making measurements on even shorter-lived isotopes possible. Decay studies in ion traps will become possible with MATS. Novel spectroscopic tools for in-trap high-resolution conversion-electron and charged-particle spectroscopy from carrier-free sources will be developed, aiming e. g. at the measurements of quadrupole moments and E0 strengths. With the possibility of both high-accuracy mass measurements of the shortest-lived isotopes and decay studies, the high sensitivity and accuracy potential of MATS is ideally suited for the study of very exotic nuclides that will only be produced at the FAIR facility. Laser spectroscopy of radioactive isotopes and isomers is an efficient and model-independent approach for the determination of nuclear ground and isomeric state properties. Hyperfine structures and isotope shifts in electronic transitions exhibit readily accessible information on the nuclear spin, magnetic dipole and electric quadrupole moments as well as root-mean-square charge radii. The dependencies of the hyperfine splitting and isotope shift on the nuclear moments and mean square nuclear charge radii are well known and the theoretical framework for the extraction of nuclear parameters is well established. These extracted parameters provide fundamental information on the structure of nuclei at the limits of stability. Vital information on both bulk and valence nuclear properties are derived and an exceptional sensitivity to changes in nuclear deformation is achieved. Laser spectroscopy provides the only mechanism for such studies in exotic systems and uniquely facilitates these studies in a model-independent manner. The accuracy of laser-spectroscopic-determined nuclear properties is very high. Requirements concerning production rates are moderate; collinear spectroscopy has been performed with production rates as few as 100 ions per second and laser-desorption resonance ionization mass spectroscopy (combined with beta-delayed neutron detection) has been achieved with rates of only a few atoms per second. This Technical Design Report describes a new Penning trap mass spectrometry setup as well as a number of complementary experimental devices for laser spectroscopy, which will provide a complete system with respect to the physics and isotopes that can be studied. Since MATS and LaSpec require high-quality low-energy beams, the two collaborations have a common beamline to stop the radioactive beam of in-flight produced isotopes and prepare them in a suitable way for transfer to the MATS and LaSpec setups, respectively.
  •  
7.
  • Obers, Niels A., et al. (författare)
  • Quantum gravity phenomenology at the dawn of the multi-messenger era—A review
  • 2022
  • Ingår i: Progress in Particle and Nuclear Physics. - : Elsevier BV. - 0146-6410 .- 1873-2224. ; 125
  • Forskningsöversikt (refereegranskat)abstract
    • The exploration of the universe has recently entered a new era thanks to the multi-messenger paradigm, characterized by a continuous increase in the quantity and quality of experimental data that is obtained by the detection of the various cosmic messengers (photons, neutrinos, cosmic rays and gravitational waves) from numerous origins. They give us information about their sources in the universe and the properties of the intergalactic medium. Moreover, multi-messenger astronomy opens up the possibility to search for phenomenological signatures of quantum gravity. On the one hand, the most energetic events allow us to test our physical theories at energy regimes which are not directly accessible in accelerators; on the other hand, tiny effects in the propagation of very high energy particles could be amplified by cosmological distances. After decades of merely theoretical investigations, the possibility of obtaining phenomenological indications of Planck-scale effects is a revolutionary step in the quest for a quantum theory of gravity, but it requires cooperation between different communities of physicists (both theoretical and experimental). This review, prepared within the COST Action CA18108 “Quantum gravity phenomenology in the multi-messenger approach”, is aimed at promoting this cooperation by giving a state-of-the art account of the interdisciplinary expertise that is needed in the effective search of quantum gravity footprints in the production, propagation and detection of cosmic messengers.
  •  
8.
  • Arun, K. G., et al. (författare)
  • New horizons for fundamental physics with LISA
  • 2022
  • Ingår i: Living Reviews in Relativity. - : Springer Science and Business Media LLC. - 1433-8351 .- 2367-3613. ; 25:1
  • Forskningsöversikt (refereegranskat)abstract
    • The Laser Interferometer Space Antenna (LISA) has the potential to reveal wonders about the fundamental theory of nature at play in the extreme gravity regime, where the gravitational interaction is both strong and dynamical. In this white paper, the Fundamental Physics Working Group of the LISA Consortium summarizes the current topics in fundamental physics where LISA observations of gravitational waves can be expected to provide key input. We provide the briefest of reviews to then delineate avenues for future research directions and to discuss connections between this working group, other working groups and the consortium work package teams. These connections must be developed for LISA to live up to its science potential in these areas.
  •  
9.
  • Banerjee, Antara, et al. (författare)
  • Functional Foods : A Promising Strategy for Restoring Gut Microbiota Diversity Impacted by SARS-CoV-2 Variants
  • 2023
  • Ingår i: Nutrients. - : MDPI. - 2072-6643. ; 15:11
  • Forskningsöversikt (refereegranskat)abstract
    • Natural herbs and functional foods contain bioactive molecules capable of augmenting the immune system and mediating anti-viral functions. Functional foods, such as prebiotics, probiotics, and dietary fibers, have been shown to have positive effects on gut microbiota diversity and immune function. The use of functional foods has been linked to enhanced immunity, regeneration, improved cognitive function, maintenance of gut microbiota, and significant improvement in overall health. The gut microbiota plays a critical role in maintaining overall health and immune function, and disruptions to its balance have been linked to various health problems. SARS-CoV-2 infection has been shown to affect gut microbiota diversity, and the emergence of variants poses new challenges to combat the virus. SARS-CoV-2 recognizes and infects human cells through ACE2 receptors prevalent in lung and gut epithelial cells. Humans are prone to SARS-CoV-2 infection because their respiratory and gastrointestinal tracts are rich in microbial diversity and contain high levels of ACE2 and TMPRSS2. This review article explores the potential use of functional foods in mitigating the impact of SARS-CoV-2 variants on gut microbiota diversity, and the potential use of functional foods as a strategy to combat these effects.
  •  
10.
  • Das, Antarikshya, et al. (författare)
  • Biofilm modifiers : The disparity in paradigm of oral biofilm ecosystem
  • 2023
  • Ingår i: Biomedicine and Pharmacotherapy. - : Elsevier. - 0753-3322 .- 1950-6007. ; 164
  • Forskningsöversikt (refereegranskat)abstract
    • A biofilm is a population of sessile microorganisms that has a distinct organized structure and characteristics like channels and projections. Good oral hygiene and reduction in the prevalence of periodontal diseases arise from minimal biofilm accumulation in the mouth, however, studies focusing on modifying the ecology of oral biofilms have not yet been consistently effective. The self-produced matrix of extracellular polymeric substances and greater antibiotic resistance make it difficult to target and eliminate biofilm infections, which lead to serious clinical consequences that are often lethal. Therefore, a better understanding is required to target and modify the ecology of biofilms in order to eradicate the infection, not only in instances of oral disorders but also in terms of nosocomial infections. The review focuses on several biofilm ecology modifiers to prevent biofilm infections, as well as the involvement of biofilm in antibiotic resistance, implants or in-dwelling device contamination, dental caries, and other periodontal disorders. It also discusses recent advances in nanotechnology that may lead to novel strategies for preventing and treating infections caused by biofilms as well as a novel outlook to infection control.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 17

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy