SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Davalos A) ;hsvcat:1;lar1:(uu)"

Search: WFRF:(Davalos A) > Natural sciences > Uppsala University

  • Result 1-6 of 6
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Hyde, K. D., et al. (author)
  • Global consortium for the classification of fungi and fungus-like taxa
  • 2023
  • In: MYCOSPHERE. - : Mushroom Research Foundation. - 2077-7000 .- 2077-7019. ; 14:1, s. 1960-2012
  • Journal article (peer-reviewed)abstract
    • The Global Consortium for the Classification of Fungi and fungus-like taxa is an international initiative of more than 550 mycologists to develop an electronic structure for the classification of these organisms. The members of the Consortium originate from 55 countries/regions worldwide, from a wide range of disciplines, and include senior, mid-career and early-career mycologists and plant pathologists. The Consortium will publish a biannual update of the Outline of Fungi and fungus-like taxa, to act as an international scheme for other scientists. Notes on all newly published taxa at or above the level of species will be prepared and published online on the Outline of Fungi website (https://www.outlineoffungi.org/), and these will be finally published in the biannual edition of the Outline of Fungi and fungus-like taxa. Comments on recent important taxonomic opinions on controversial topics will be included in the biannual outline. For example, 'to promote a more stable taxonomy in Fusarium given the divergences over its generic delimitation', or 'are there too many genera in the Boletales?' and even more importantly, 'what should be done with the tremendously diverse 'dark fungal taxa?' There are undeniable differences in mycologists' perceptions and opinions regarding species classification as well as the establishment of new species. Given the pluralistic nature of fungal taxonomy and its implications for species concepts and the nature of species, this consortium aims to provide a platform to better refine and stabilise fungal classification, taking into consideration views from different parties. In the future, a confidential voting system will be set up to gauge the opinions of all mycologists in the Consortium on important topics. The results of such surveys will be presented to the International Commission on the Taxonomy of Fungi (ICTF) and the Nomenclature Committee for Fungi (NCF) with opinions and percentages of votes for and against. Criticisms based on scientific evidence with regards to nomenclature, classifications, and taxonomic concepts will be welcomed, and any recommendations on specific taxonomic issues will also be encouraged; however, we will encourage professionally and ethically responsible criticisms of others' work. This biannual ongoing project will provide an outlet for advances in various topics of fungal classification, nomenclature, and taxonomic concepts and lead to a community-agreed classification scheme for the fungi and fungus-like taxa. Interested parties should contact the lead author if they would like to be involved in future outlines.
  •  
2.
  • Osmanski, Austin B., et al. (author)
  • Insights into mammalian TE diversity through the curation of 248 genome assemblies
  • 2023
  • In: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 380:6643, s. 371-
  • Journal article (peer-reviewed)abstract
    • We examined transposable element (TE) content of 248 placental mammal genome assemblies, the largest de novo TE curation effort in eukaryotes to date. We found that although mammals resemble one another in total TE content and diversity, they show substantial differences with regard to recent TE accumulation. This includes multiple recent expansion and quiescence events across the mammalian tree. Young TEs, particularly long interspersed elements, drive increases in genome size, whereas DNA transposons are associated with smaller genomes. Mammals tend to accumulate only a few types of TEs at any given time, with one TE type dominating. We also found association between dietary habit and the presence of DNA transposon invasions. These detailed annotations will serve as a benchmark for future comparative TE analyses among placental mammals.
  •  
3.
  •  
4.
  • Paulat, Nicole S., et al. (author)
  • Chiropterans Are a Hotspot for Horizontal Transfer of DNA Transposons in Mammalia
  • 2023
  • In: Molecular biology and evolution. - : Oxford University Press. - 0737-4038 .- 1537-1719. ; 40:5
  • Journal article (peer-reviewed)abstract
    • Horizontal transfer of transposable elements (TEs) is an important mechanism contributing to genetic diversity and innovation. Bats (order Chiroptera) have repeatedly been shown to experience horizontal transfer of TEs at what appears to be a high rate compared with other mammals. We investigated the occurrence of horizontally transferred (HT) DNA transposons involving bats. We found over 200 putative HT elements within bats; 16 transposons were shared across distantly related mammalian clades, and 2 other elements were shared with a fish and two lizard species. Our results indicate that bats are a hotspot for horizontal transfer of DNA transposons. These events broadly coincide with the diversification of several bat clades, supporting the hypothesis that DNA transposon invasions have contributed to genetic diversification of bats.
  •  
5.
  •  
6.
  • Tavares, Valeria da C., et al. (author)
  • Out of the Antilles : Fossil phylogenies support reverse colonization of bats to South America
  • 2018
  • In: Journal of Biogeography. - : John Wiley & Sons. - 0305-0270 .- 1365-2699. ; 45:4, s. 859-873
  • Journal article (peer-reviewed)abstract
    • Aim: Previous phylogenies of extant short-faced bats (Chiroptera: Stenodermatina) supported either two colonization events from the mainland to the Antilles, or reverse colonization, but lacked both fossil data and statistical modelling of biogeography. Recent multi-locus phylogenies of noctilionoid bats and likelihood modelling of ancestral ranges support a continental origin for the clade. We include all known extinct and extant stenodermatina species and apply statistical modelling to test competing biogeographical hypotheses. Location: The Neotropics, including the Antilles. Methods: We combined mitochondrial and nuclear sequences with 302 new morphological characters to infer phylogenies. Bayesian tip-dating analyses applied codon models to protein-coding genes, with relaxed molecular clocks fitting a compound Poisson process. The combined maximum clade credibility tree was used in comparisons of alternative biogeographical models. Results: The new phylogenies support the fossil Cubanycteris silvai as sister to all extant species of short-faced bats. Among Artibeus (the sister group to short-faced bats), the Antillean fossil A. anthonyi has distinctive characters and is nested within the subgenus Artibeus. The common ancestor of all short-faced bats is inferred to be Antillean, as a mainland origin is unlikely. Founder-event speciation is the most probable process explaining the distribution of these highly divergent fossil lineages. Main conclusions: Dated, character-based phylogenies of fossil species are indispensable for biogeographical inference: without fossils, biogeographical analyses find a mainland origin for short-faced bats. The rate of founder speciation in this clade is twice as high as the estimate from noctilionoids in general, highlighting the role of founder events in the diversification of island taxa. Although rare, reverse colonization contributes key species to continental communities. Short-faced bats, including Cubanycteris, share biomechanical adaptations for a strong bite conferring access to harder figs. We hypothesize these adaptations and characters related to roosting ecology enabled ancestral lineages to successfully establish and diversify on the mainland.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-6 of 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view