SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(De Bruyne A) "

Search: WFRF:(De Bruyne A)

  • Result 1-10 of 24
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  • Panneman, Daan M., et al. (author)
  • Cost-effective sequence analysis of 113 genes in 1,192 probands with retinitis pigmentosa and Leber congenital amaurosis
  • 2023
  • In: Frontiers in Cell and Developmental Biology. - : Frontiers Media SA. - 2296-634X. ; 11
  • Journal article (peer-reviewed)abstract
    • Introduction: Retinitis pigmentosa (RP) and Leber congenital amaurosis (LCA) are two groups of inherited retinal diseases (IRDs) where the rod photoreceptors degenerate followed by the cone photoreceptors of the retina. A genetic diagnosis for IRDs is challenging since >280 genes are associated with these conditions. While whole exome sequencing (WES) is commonly used by diagnostic facilities, the costs and required infrastructure prevent its global applicability. Previous studies have shown the cost-effectiveness of sequence analysis using single molecule Molecular Inversion Probes (smMIPs) in a cohort of patients diagnosed with Stargardt disease and other maculopathies. Methods: Here, we introduce a smMIPs panel that targets the exons and splice sites of all currently known genes associated with RP and LCA, the entire RPE65 gene, known causative deep-intronic variants leading to pseudo-exons, and part of the RP17 region associated with autosomal dominant RP, by using a total of 16,812 smMIPs. The RP-LCA smMIPs panel was used to screen 1,192 probands from an international cohort of predominantly RP and LCA cases. Results and discussion: After genetic analysis, a diagnostic yield of 56% was obtained which is on par with results from WES analysis. The effectiveness and the reduced costs compared to WES renders the RP-LCA smMIPs panel a competitive approach to provide IRD patients with a genetic diagnosis, especially in countries with restricted access to genetic testing.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  • Blomme, Jonas, et al. (author)
  • The Mitochondrial DNA (mtDNA)-Associated Protein SWIB5 Influences mtDNA Architecture and Homologous Recombination
  • 2017
  • In: Plant Cell. - : Oxford University Press (OUP). - 1040-4651 .- 1532-298X. ; 29:5, s. 1137-1156
  • Journal article (peer-reviewed)abstract
    • In addition to the nucleus, mitochondria and chloroplasts in plant cells also contain genomes. Efficient DNA repair pathways are crucial in these organelles to fix damage resulting from endogenous and exogenous factors. Plant organellar genomes are complex compared to their animal counterparts and although several plant-specific mediators of organelle DNA repair have been reported, many regulators remain to be identified. Here, we show that a mitochondrial SWI/SNF (nucleosome remodeling) complex B protein, SWIB5, is capable of associating with mitochondrial DNA (mtDNA) in Arabidopsis thaliana. Gain- and loss-of-function mutants provided evidence for a role of SWIB5 in influencing mtDNA architecture and homologous recombination at specific intermediate-sized repeats both under normal and genotoxic conditions. SWIB5 interacts with other mitochondrial SWIB proteins. Gene expression and mutant phenotypic analysis of SWIB5 and SWIB family members suggests a link between organellar genome maintenance and cell proliferation. Taken together, our work presents a protein family that influences mtDNA architecture and homologous recombination in plants and suggests a link between organelle functioning and plant development.
  •  
10.
  • Wyns, A., et al. (author)
  • The Biology of Stress Intolerance in Patients with Chronic Pain-State of the Art and Future Directions
  • 2023
  • In: Journal of Clinical Medicine. - : MDPI AG. - 2077-0383. ; 12:6
  • Journal article (peer-reviewed)abstract
    • Stress has been consistently linked to negative impacts on physical and mental health. More specifically, patients with chronic pain experience stress intolerance, which is an exacerbation or occurrence of symptoms in response to any type of stress. The pathophysiological mechanisms underlying this phenomenon remain unsolved. In this state-of-the-art paper, we summarised the role of the autonomic nervous system (ANS) and hypothalamus-pituitary-adrenal (HPA) axis, the two major stress response systems in stress intolerance. We provided insights into such mechanisms based on evidence from clinical studies in both patients with chronic pain, showing dysregulated stress systems, and healthy controls supported by preclinical studies, highlighting the link between these systems and symptoms of stress intolerance. Furthermore, we explored the possible regulating role for (epi)genetic mechanisms influencing the ANS and HPA axis. The link between stress and chronic pain has become an important area of research as it has the potential to inform the development of interventions to improve the quality of life for individuals living with chronic pain. As stress has become a prevalent concern in modern society, understanding the connection between stress, HPA axis, ANS, and chronic health conditions such as chronic pain is crucial to improve public health and well-being.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 24

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view