SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(De Marchi Tommaso) ;pers:(Niméus Emma)"

Sökning: WFRF:(De Marchi Tommaso) > Niméus Emma

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Benedetti, Rosaria, et al. (författare)
  • Inhibition of histone demethylases LSD1 and UTX regulates ERα signaling in breast cancer
  • 2019
  • Ingår i: Cancers. - : MDPI AG. - 2072-6694. ; 11:12
  • Tidskriftsartikel (refereegranskat)abstract
    • In breast cancer, Lysine-specific demethylase-1 (LSD1) and other lysine demethylases (KDMs), such as Lysine-specific demethylase 6A also known as Ubiquitously transcribed tetratricopeptide repeat, X chromosome (UTX), are co-expressed and co-localize with estrogen receptors (ERs), suggesting the potential use of hybrid (epi)molecules to target histone methylation and therefore regulate/redirect hormone receptor signaling. Here, we report on the biological activity of a dual-KDM inhibitor (MC3324), obtained by coupling the chemical properties of tranylcypromine, a known LSD1 inhibitor, with the 2OG competitive moiety developed for JmjC inhibition. MC3324 displays unique features not exhibited by the single moieties and well-characterized mono-pharmacological inhibitors. Inhibiting LSD1 and UTX, MC3324 induces significant growth arrest and apoptosis in hormone-responsive breast cancer model accompanied by a robust increase in H3K4me2 and H3K27me3. MC3324 down-regulates ERα in breast cancer at both transcriptional and non-transcriptional levels, mimicking the action of a selective endocrine receptor disruptor. MC3324 alters the histone methylation of ERα-regulated promoters, thereby affecting the transcription of genes involved in cell surveillance, hormone response, and death. MC3324 reduces cell proliferation in ex vivo breast cancers, as well as in breast models with acquired resistance to endocrine therapies. Similarly, MC3324 displays tumor-selective potential in vivo, in both xenograft mice and chicken embryo models, with no toxicity and good oral efficacy. This epigenetic multi-target approach is effective and may overcome potential mechanism(s) of resistance in breast cancer.
  •  
2.
  • Benedetti, Rosaria, et al. (författare)
  • Regulatory interplay between mir-181a-5p and estrogen receptor signaling cascade in breast cancer
  • 2021
  • Ingår i: Cancers. - : MDPI AG. - 2072-6694. ; 13:3
  • Tidskriftsartikel (refereegranskat)abstract
    • The efficacy and side effects of endocrine therapy in breast cancer (BC) depend largely on estrogen receptor alpha (ERα) expression, the specific drug administered, and treatment scheduling. Although the benefits of endocrine therapy outweigh any adverse effects in the initial stages of BC, later- or advanced-stage tumors acquire resistance to treatments. The mechanisms underlying tumor resistance to therapy are still not well understood, posing a major challenge for BC patient care. Epigenetic regulation and miRNA expression may be involved in the switch from a treatment-sensitive to a treatment-resistant state and could provide a valid therapeutic strategy for ERα negative BC. Here, a hybrid lysine-specific histone demethylase inhibitor, MC3324, displaying selective estrogen receptor down-regulator-like activities in BC, was used to highlight the interplay between epigenetic and ERα signaling. MC3324 anticancer action is mediated by microRNA (miRNA) expression regulation, indicating an innovative function for this molecule. Integrated analysis suggests a crosstalk between estrogen signaling, ERα interactors, miRNAs, and their putative targets. Specifically, miR-181a-5p expression is regulated by MC3324 and has an impact on cellular levels of ERα. A comparison of breast tumor versus healthy mammary tissues confirmed the important role of miR-181a-5p in ERα regulation and points to its putative predictive function in BC therapy.
  •  
3.
  • Chianese, Ugo, et al. (författare)
  • Histone lysine demethylase inhibition reprograms prostate cancer metabolism and mechanics
  • 2022
  • Ingår i: Molecular Metabolism. - : Elsevier BV. - 2212-8778. ; 64
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: Aberrant activity of androgen receptor (AR) is the primary cause underlying development and progression of prostate cancer (PCa) and castration-resistant PCa (CRPC). Androgen signaling regulates gene transcription and lipid metabolism, facilitating tumor growth and therapy resistance in early and advanced PCa. Although direct AR signaling inhibitors exist, AR expression and function can also be epigenetically regulated. Specifically, lysine (K)-specific demethylases (KDMs), which are often overexpressed in PCa and CRPC phenotypes, regulate the AR transcriptional program. Methods: We investigated LSD1/UTX inhibition, two KDMs, in PCa and CRPC using a multi-omics approach. We first performed a mitochondrial stress test to evaluate respiratory capacity after treatment with MC3324, a dual KDM-inhibitor, and then carried out lipidomic, proteomic, and metabolic analyses. We also investigated mechanical cellular properties with acoustic force spectroscopy. Results: MC3324 induced a global increase in H3K4me2 and H3K27me3 accompanied by significant growth arrest and apoptosis in androgen-responsive and -unresponsive PCa systems. LSD1/UTX inhibition downregulated AR at both transcriptional and non-transcriptional level, showing cancer selectivity, indicating its potential use in resistance to androgen deprivation therapy. Since MC3324 impaired metabolic activity, by modifying the protein and lipid content in PCa and CRPC cell lines. Epigenetic inhibition of LSD1/UTX disrupted mitochondrial ATP production and mediated lipid plasticity, which affected the phosphocholine class, an important structural element for the cell membrane in PCa and CRPC associated with changes in physical and mechanical properties of cancer cells. Conclusions: Our data suggest a network in which epigenetics, hormone signaling, metabolite availability, lipid content, and mechano-metabolic process are closely related. This network may be able to identify additional hotspots for pharmacological intervention and underscores the key role of KDM-mediated epigenetic modulation in PCa and CRPC.
  •  
4.
  • De Marchi, Tommaso, et al. (författare)
  • Proteogenomic Workflow Reveals Molecular Phenotypes Related to Breast Cancer Mammographic Appearance
  • 2021
  • Ingår i: Journal of Proteome Research. - : American Chemical Society (ACS). - 1535-3893 .- 1535-3907. ; 20:5, s. 2983-3001
  • Tidskriftsartikel (refereegranskat)abstract
    • Proteogenomic approaches have enabled the generat̲ion of novel information levels when compared to single omics studies although burdened by extensive experimental efforts. Here, we improved a data-independent acquisition mass spectrometry proteogenomic workflow to reveal distinct molecular features related to mammographic appearances in breast cancer. Our results reveal splicing processes detectable at the protein level and highlight quantitation and pathway complementarity between RNA and protein data. Furthermore, we confirm previously detected enrichments of molecular pathways associated with estrogen receptor-dependent activity and provide novel evidence of epithelial-to-mesenchymal activity in mammography-detected spiculated tumors. Several transcript-protein pairs displayed radically different abundances depending on the overall clinical properties of the tumor. These results demonstrate that there are differentially regulated protein networks in clinically relevant tumor subgroups, which in turn alter both cancer biology and the abundance of biomarker candidates and drug targets.
  •  
5.
  • De Marchi, Tommaso, et al. (författare)
  • Proteogenomics decodes the evolution of human ipsilateral breast cancer
  • 2023
  • Ingår i: Communications Biology. - : Springer Science and Business Media LLC. - 2399-3642. ; 6:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Ipsilateral breast tumor recurrence (IBTR) is a clinically important event, where an isolated in-breast recurrence is a potentially curable event but associated with an increased risk of distant metastasis and breast cancer death. It remains unclear if IBTRs are associated with molecular changes that can be explored as a resource for precision medicine strategies. Here, we employed proteogenomics to analyze a cohort of 27 primary breast cancers and their matched IBTRs to define proteogenomic determinants of molecular tumor evolution. Our analyses revealed a relationship between hormonal receptors status and proliferation levels resulting in the gain of somatic mutations and copy number. This in turn re-programmed the transcriptome and proteome towards a highly replicating and genomically unstable IBTRs, possibly enhanced by APOBEC3B. In order to investigate the origins of IBTRs, a second analysis that included primaries with no recurrence pinpointed proliferation and immune infiltration as predictive of IBTR. In conclusion, our study shows that breast tumors evolve into different IBTRs depending on hormonal status and proliferation and that immune cell infiltration and Ki-67 are significantly elevated in primary tumors that develop IBTR. These results can serve as a starting point to explore markers to predict IBTR formation and stratify patients for adjuvant therapy.
  •  
6.
  • De Marchi, Tommaso, et al. (författare)
  • Proteomic profiling reveals that ESR1 mutations enhance cyclin-dependent kinase signaling
  • 2024
  • Ingår i: Scientific Reports. - 2045-2322. ; 14, s. 1-16
  • Tidskriftsartikel (refereegranskat)abstract
    • Three quarters of all breast cancers express the estrogen receptor (ER, ESR1 gene), which promotes tumor growth and constitutes a direct target for endocrine therapies. ESR1 mutations have been implicated in therapy resistance in metastatic breast cancer, in particular to aromatase inhibitors. ESR1 mutations promote constitutive ER activity and affect other signaling pathways, allowing cancer cells to proliferate by employing mechanisms within and without direct regulation by the ER. Although subjected to extensive genetic and transcriptomic analyses, understanding of protein alterations remains poorly investigated. Towards this, we employed an integrated mass spectrometry based proteomic approach to profile the protein and phosphoprotein differences in breast cancer cell lines expressing the frequent Y537N and Y537S ER mutations. Global proteome analysis revealed enrichment of mitotic and immune signaling pathways in ER mutant cells, while phosphoprotein analysis evidenced enriched activity of proliferation associated kinases, in particular CDKs and mTOR. Integration of protein expression and phosphorylation data revealed pathway-dependent discrepancies (motility vs proliferation) that were observed at varying degrees across mutant and wt ER cells. Additionally, protein expression and phosphorylation patterns, while under different regulation, still recapitulated the estrogen-independent phenotype of ER mutant cells. Our study is the first proteome-centric characterization of ESR1 mutant models, out of which we confirm estrogen independence of ER mutants and reveal the enrichment of immune signaling pathways at the proteomic level.
  •  
7.
  • Egelberg, Moa, et al. (författare)
  • Low levels of WRAP53 predict decreased efficacy of radiotherapy and are prognostic for local recurrence and death from breast cancer : a long-term follow-up of the SweBCG91RT randomized trial
  • 2023
  • Ingår i: Molecular Oncology. - : Wiley. - 1574-7891 .- 1878-0261. ; 17:10, s. 2029-2040
  • Tidskriftsartikel (refereegranskat)abstract
    • Downregulation of the DNA repair protein WD40-encoding RNA antisense to p53 (WRAP53) has been associated with radiotherapy resistance and reduced cancer survival. The aim of this study was to evaluate WRAP53 protein and RNA levels as prognostic and predictive markers in the SweBCG91RT trial, in which breast cancer patients were randomized for postoperative radiotherapy. Using tissue microarray and microarray-based gene expression, 965 and 759 tumors were assessed for WRAP53 protein and RNA levels, respectively. Correlation with local recurrence and breast cancer-related death was assessed for prognosis, and the interaction between WRAP53 and radiotherapy in relation to local recurrence was assessed for radioresistance prediction. Tumors with low WRAP53 protein levels had a higher subhazard ratio (SHR) for local recurrence [1.76 (95% CI 1.10–2.79)] and breast cancer-related death [1.55 (1.02–2.38)]. Low WRAP53 RNA levels were associated with almost a three-fold decreased effect of radiotherapy in relation to ipsilateral breast tumor recurrence [IBTR; SHR 0.87 (95% CI 0.44–1.72)] compared with high RNA levels [0.33 (0.19–0.55)], with a significant interaction (P = 0.024). In conclusion, low WRAP53 protein is prognostic for local recurrence and breast cancer-related death. Low WRAP53 RNA is a potential marker for radioresistance.
  •  
8.
  • Sigurjonsdottir, Gudbjörg, et al. (författare)
  • Comparison of SP142 and 22C3 PD-L1 assays in a population-based cohort of triple-negative breast cancer patients in the context of their clinically established scoring algorithms
  • 2023
  • Ingår i: Breast Cancer Research. - 1465-5411 .- 1465-542X. ; 25:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Immunohistochemical (IHC) PD-L1 expression is commonly employed as predictive biomarker for checkpoint inhibitors in triple-negative breast cancer (TNBC). However, IHC evaluation methods are non-uniform and further studies are needed to optimize clinical utility. Methods: We compared the concordance, prognostic value and gene expression between PD-L1 IHC expression by SP142 immune cell (IC) score and 22C3 combined positive score (CPS; companion IHC diagnostic assays for atezolizumab and pembrolizumab, respectively) in a population-based cohort of 232 early-stage TNBC patients. Results: The expression rates of PD-L1 for SP142 IC ≥ 1%, 22C3 CPS ≥ 10, 22C3 CPS ≥ 1 and 22C3 IC ≥ 1% were 50.9%, 27.2%, 53.9% and 41.8%, respectively. The analytical concordance (kappa values) between SP142 IC+ and these three different 22C3 scorings were 73.7% (0.48, weak agreement), 81.5% (0.63) and 86.6% (0.73), respectively. The SP142 assay was better at identifying 22C3 positive tumors than the 22C3 assay was at detecting SP142 positive tumors. PD-L1 (CD274) gene expression (mRNA) showed a strong positive association with all two-categorical IHC scorings of the PD-L1 expression, irrespective of antibody and cut-off (Spearman Rho ranged from 0.59 to 0.62; all p-values < 0.001). PD-L1 IHC positivity and abundance of tumor infiltrating lymphocytes were of positive prognostic value in univariable regression analyses in patients treated with (neo)adjuvant chemotherapy, where it was strongest for 22C3 CPS ≥ 10 and distant relapse-free interval (HR = 0.18, p = 0.019). However, PD-L1 status was not independently prognostic when adjusting for abundance of tumor infiltrating lymphocytes in multivariable analyses. Conclusion: Our findings support that the SP142 and 22C3 IHC assays, with their respective clinically applied scoring algorithms, are not analytically equivalent where they identify partially non-overlapping subpopulations of TNBC patients and cannot be substituted with one another regarding PD-L1 detection. Trial registration The Swedish Cancerome Analysis Network - Breast (SCAN-B) study, retrospectively registered 2nd Dec 2014 at ClinicalTrials.gov; ID NCT02306096.
  •  
9.
  • Yuan, Ouyang, et al. (författare)
  • A somatic mutation in moesin drives progression into acute myeloid leukemia
  • 2022
  • Ingår i: Science Advances. - : American Association for the Advancement of Science (AAAS). - 2375-2548. ; 8:16
  • Tidskriftsartikel (refereegranskat)abstract
    • Acute myeloid leukemia (AML) arises when leukemia-initiating cells, defined by a primary genetic lesion, acquire subsequent molecular changes whose cumulative effects bypass tumor suppression. The changes that underlie AML pathogenesis not only provide insights into the biology of transformation but also reveal novel therapeutic opportunities. However, backtracking these events in transformed human AML samples is challenging, if at all possible. Here, we approached this question using a murine in vivo model with an MLL-ENL fusion protein as a primary molecular event. Upon clonal transformation, we identified and extensively verified a recurrent codon-changing mutation (Arg(295)Cys) in the ERM protein moesin that markedly accelerated leukemogenesis. Human cancer-associated moesin mutations at the conserved arginine-295 residue similarly enhanced MLL-ENL-driven leukemogenesis. Mechanistically, the mutation interrupted the stability of moesin and conferred a neomorphic activity to the protein, which converged on enhanced extracellular signal-regulated kinase activity. Thereby, our studies demonstrate a critical role of ERM proteins in AML, with implications also for human cancer.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy