SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(De Marco Giovanni) ;hsvcat:2"

Sökning: WFRF:(De Marco Giovanni) > Teknik

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Marinho, Marco A. M., et al. (författare)
  • Array interpolation based on multivariate adaptive regression splines
  • 2016
  • Ingår i: 2016 IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM). - Piscataway, NJ : Institute of Electrical and Electronics Engineers (IEEE).
  • Konferensbidrag (refereegranskat)abstract
    • Many important signal processing techniques such as Spatial Smoothing, Forward Backward Averaging and Root-MUSIC, rely on antenna arrays with specific and precise structures. Arrays with such ideal structures, such as a centro-hermitian structure, are often hard to build in practice. Array interpolation is used to enable the usage of these techniques with imperfect (not having a centro-hermitian structure) arrays. Most interpolation methods rely on methods based on least squares (LS) to map the output of a perfect virtual array based on the real array. In this work, the usage of Multivariate Adaptive Regression Splines (MARS) is proposed instead of the traditional LS to interpolate arrays with responses largely different from the ideal.
  •  
2.
  • Garibotto, Giovanni, et al. (författare)
  • White paper on industrial applications of computer vision and pattern recognition
  • 2013
  • Ingår i: Image Analysis and Processing – ICIAP 2013. ICIAP 2013. - Berlin, Heidelberg : Springer. - 9783642411830 - 9783642411847 ; , s. 721-730
  • Konferensbidrag (refereegranskat)abstract
    • The paper provides a summary of the contributions to the industrial session at ICIAP2013, describing a few practical applications of Video Analysis, in the Surveillance and Security field. The session has been organized to stimulate an open discussion within the scientific community of CVPR on new emerging research areas which deserve particular attention, and may contribute to the improvement of industrial applications in the near future. © 2013 Springer-Verlag.
  •  
3.
  • Backes, Claudia, et al. (författare)
  • Production and processing of graphene and related materials
  • 2020
  • Ingår i: 2D Materials. - : IOP Publishing. - 2053-1583. ; 7:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present an overview of the main techniques for production and processing of graphene and related materials (GRMs), as well as the key characterization procedures. We adopt a 'hands-on' approach, providing practical details and procedures as derived from literature as well as from the authors' experience, in order to enable the reader to reproduce the results. Section I is devoted to 'bottom up' approaches, whereby individual constituents are pieced together into more complex structures. We consider graphene nanoribbons (GNRs) produced either by solution processing or by on-surface synthesis in ultra high vacuum (UHV), as well carbon nanomembranes (CNM). Production of a variety of GNRs with tailored band gaps and edge shapes is now possible. CNMs can be tuned in terms of porosity, crystallinity and electronic behaviour. Section II covers 'top down' techniques. These rely on breaking down of a layered precursor, in the graphene case usually natural crystals like graphite or artificially synthesized materials, such as highly oriented pyrolythic graphite, monolayers or few layers (FL) flakes. The main focus of this section is on various exfoliation techniques in a liquid media, either intercalation or liquid phase exfoliation (LPE). The choice of precursor, exfoliation method, medium as well as the control of parameters such as time or temperature are crucial. A definite choice of parameters and conditions yields a particular material with specific properties that makes it more suitable for a targeted application. We cover protocols for the graphitic precursors to graphene oxide (GO). This is an important material for a range of applications in biomedicine, energy storage, nanocomposites, etc. Hummers' and modified Hummers' methods are used to make GO that subsequently can be reduced to obtain reduced graphene oxide (RGO) with a variety of strategies. GO flakes are also employed to prepare three-dimensional (3d) low density structures, such as sponges, foams, hydro- or aerogels. The assembly of flakes into 3d structures can provide improved mechanical properties. Aerogels with a highly open structure, with interconnected hierarchical pores, can enhance the accessibility to the whole surface area, as relevant for a number of applications, such as energy storage. The main recipes to yield graphite intercalation compounds (GICs) are also discussed. GICs are suitable precursors for covalent functionalization of graphene, but can also be used for the synthesis of uncharged graphene in solution. Degradation of the molecules intercalated in GICs can be triggered by high temperature treatment or microwave irradiation, creating a gas pressure surge in graphite and exfoliation. Electrochemical exfoliation by applying a voltage in an electrolyte to a graphite electrode can be tuned by varying precursors, electrolytes and potential. Graphite electrodes can be either negatively or positively intercalated to obtain GICs that are subsequently exfoliated. We also discuss the materials that can be amenable to exfoliation, by employing a theoretical data-mining approach. The exfoliation of LMs usually results in a heterogeneous dispersion of flakes with different lateral size and thickness. This is a critical bottleneck for applications, and hinders the full exploitation of GRMs produced by solution processing. The establishment of procedures to control the morphological properties of exfoliated GRMs, which also need to be industrially scalable, is one of the key needs. Section III deals with the processing of flakes. (Ultra)centrifugation techniques have thus far been the most investigated to sort GRMs following ultrasonication, shear mixing, ball milling, microfluidization, and wet-jet milling. It allows sorting by size and thickness. Inks formulated from GRM dispersions can be printed using a number of processes, from inkjet to screen printing. Each technique has specific rheological requirements, as well as geometrical constraints. The solvent choice is critical, not only for the GRM stability, but also in terms of optimizing printing on different substrates, such as glass, Si, plastic, paper, etc, all with different surface energies. Chemical modifications of such substrates is also a key step. Sections IV-VII are devoted to the growth of GRMs on various substrates and their processing after growth to place them on the surface of choice for specific applications. The substrate for graphene growth is a key determinant of the nature and quality of the resultant film. The lattice mismatch between graphene and substrate influences the resulting crystallinity. Growth on insulators, such as SiO2, typically results in films with small crystallites, whereas growth on the close-packed surfaces of metals yields highly crystalline films. Section IV outlines the growth of graphene on SiC substrates. This satisfies the requirements for electronic applications, with well-defined graphene-substrate interface, low trapped impurities and no need for transfer. It also allows graphene structures and devices to be measured directly on the growth substrate. The flatness of the substrate results in graphene with minimal strain and ripples on large areas, allowing spectroscopies and surface science to be performed. We also discuss the surface engineering by intercalation of the resulting graphene, its integration with Si-wafers and the production of nanostructures with the desired shape, with no need for patterning. Section V deals with chemical vapour deposition (CVD) onto various transition metals and on insulators. Growth on Ni results in graphitized polycrystalline films. While the thickness of these films can be optimized by controlling the deposition parameters, such as the type of hydrocarbon precursor and temperature, it is difficult to attain single layer graphene (SLG) across large areas, owing to the simultaneous nucleation/growth and solution/precipitation mechanisms. The differing characteristics of polycrystalline Ni films facilitate the growth of graphitic layers at different rates, resulting in regions with differing numbers of graphitic layers. High-quality films can be grown on Cu. Cu is available in a variety of shapes and forms, such as foils, bulks, foams, thin films on other materials and powders, making it attractive for industrial production of large area graphene films. The push to use CVD graphene in applications has also triggered a research line for the direct growth on insulators. The quality of the resulting films is lower than possible to date on metals, but enough, in terms of transmittance and resistivity, for many applications as described in section V. Transfer technologies are the focus of section VI. CVD synthesis of graphene on metals and bottom up molecular approaches require SLG to be transferred to the final target substrates. To have technological impact, the advances in production of high-quality large-area CVD graphene must be commensurate with those on transfer and placement on the final substrates. This is a prerequisite for most applications, such as touch panels, anticorrosion coatings, transparent electrodes and gas sensors etc. New strategies have improved the transferred graphene quality, making CVD graphene a feasible option for CMOS foundries. Methods based on complete etching of the metal substrate in suitable etchants, typically iron chloride, ammonium persulfate, or hydrogen chloride although reliable, are time- and resource-consuming, with damage to graphene and production of metal and etchant residues. Electrochemical delamination in a low-concentration aqueous solution is an alternative. In this case metallic substrates can be reused. Dry transfer is less detrimental for the SLG quality, enabling a deterministic transfer. There is a large range of layered materials (LMs) beyond graphite. Only few of them have been already exfoliated and fully characterized. Section VII deals with the growth of some of these materials. Amongst them, h-BN, transition metal tri- and di-chalcogenides are of paramount importance. The growth of h-BN is at present considered essential for the development of graphene in (opto) electronic applications, as h-BN is ideal as capping layer or substrate. The interesting optical and electronic properties of TMDs also require the development of scalable methods for their production. Large scale growth using chemical/physical vapour deposition or thermal assisted conversion has been thus far limited to a small set, such as h-BN or some TMDs. Heterostructures could also be directly grown. Section VIII discusses advances in GRM functionalization. A broad range of organic molecules can be anchored to the sp(2) basal plane by reductive functionalization. Negatively charged graphene can be prepared in liquid phase (e.g. via intercalation chemistry or electrochemically) and can react with electrophiles. This can be achieved both in dispersion or on substrate. The functional groups of GO can be further derivatized. Graphene can also be noncovalently functionalized, in particular with polycyclic aromatic hydrocarbons that assemble on the sp(2) carbon network by pi-pi stacking. In the liquid phase, this can enhance the colloidal stability of SLG/FLG. Approaches to achieve noncovalent on-substrate functionalization are also discussed, which can chemically dope graphene. Research efforts to derivatize CNMs are also summarized, as well as novel routes to selectively address defect sites. In dispersion, edges are the most dominant defects and can be covalently modified. This enhances colloidal stability without modifying the graphene basal plane. Basal plane point defects can also be modified, passivated and healed in ultra-high vacuum. The decoration of graphene with metal nanoparticles (NPs) has also received considerable attention, as it allows to exploit synergistic effects between NPs and graphene. Decoration can be either achieved chemically or in the gas phase. All LMs,
  •  
4.
  • Donolato, Marco, et al. (författare)
  • Quantification of rolling circle amplified DNA using magnetic nanobeads and a Blu-ray optical pick-up unit
  • 2015
  • Ingår i: Biosensors & bioelectronics. - : Elsevier BV. - 0956-5663 .- 1873-4235. ; 67:SI, s. 649-655
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the first implementation of a Blu-ray optical pickup unit (OPU) for the high-performance low-cost readout of a homogeneous assay in a multichamber microfluidic disc with a chamber thickness of 600μm. The assay relies on optical measurements of the dynamics of magnetic nanobeads in an oscillating magnetic field applied along the light propagation direction. The laser light provided by the OPU is transmitted through the sample chamber and reflected back onto the photo detector array of the OPU via a mirror. Spectra of the 2nd harmonic photo detector signal vs. the frequency of the applied magnetic field show a characteristic peak due to freely rotating magnetic nanobeads. Beads bound to ~1μm coils of DNA formed off-chip by padlock probe recognition and rolling circle amplification show a different dynamics and the intensity of the characteristic peak decreases. We have determined the optimum magnetic bead concentration to 0.1mg/mL and have measured the response vs. concentration of DNA coils formed from Escherichia Coli. We have found a limit of detection of 10pM and a dynamic range of about two orders of magnitude, which is comparable to the performance obtained using costly and bulky laboratory equipment. The presented device leverages on the advanced but low-cost technology of Blu-ray OPUs to provide a low-cost and high-performance magnetic bead-based readout of homogeneous bioassays. The device is highly flexible and we have demonstrated its use on microfluidic chambers in a disc with a thickness compatible with current optical media mass-production facilities.
  •  
5.
  • Nieto Peroy, Cristóbal, et al. (författare)
  • A Concurrent Testing Facility Approach to Validate Small Satellite Combined Operations
  • 2021
  • Ingår i: Aerospace. - : MDPI. - 2226-4310. ; 8:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Federated remote laboratories allow for the execution of experiments ex situ. The coordination of several laboratories can be used to perform concurrent experiments of combined space operations. However, the latency of the communications between facilities is critical to performing adequate real-time experiments. This paper presents an approach for conducting coordinated experiments between floating platforms at two remote laboratories. Two independently designed platforms, one at Luleå University of Technology and the other at La Sapienza University of Rome, were established for this purpose. A synchronization method based on the Simple Network Time Protocol was created, allowing the offset and delay between the agents to be measured.Both platforms exchange data about their measured time and pose through a UDP/IP protocol over the internet. This approach was validated with the execution of simulated operations. A first demonstrative experiment was also performed showing the possibility to realize leader/follower coordinated operations. The results of the simulations and experiments showed communication delays on the order of tens of milliseconds with no significant impact on the control performance. Consequently, the suggested protocol was proven to be adequate for conducting coordinated experiments in real time between remote laboratories.
  •  
6.
  • Nieto-Peroy, Cristóbal, et al. (författare)
  • Simulation of Spacecraft Formation Maneuvers by means of Floating Platforms
  • 2021
  • Ingår i: 2021 IEEE Aerospace Conference (50100). - : IEEE.
  • Konferensbidrag (refereegranskat)abstract
    • This article provides a proposal case for studying simulations of spacecraft formation maneuvers in a Hardware-in-the-Loop Simulation Testbed specifically devoted to nanosatellites. The design specifications of the setup to perform such simulations are given, as well as the methods and results of the preliminary characterization of the floating platform to be used. The intent is to create a corpus of tests to find the dynamic behavior in a frictionless simulation as part of a concurrent decentralized simulation between the NanoSat Lab in Luleå University of Technology and the Guidance and Navigation Lab at La Sapienza.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6
Typ av publikation
konferensbidrag (3)
tidskriftsartikel (3)
Typ av innehåll
refereegranskat (6)
Författare/redaktör
Vinel, Alexey, 1983- (1)
Flammini, Francesco, ... (1)
Yang, Sheng (1)
Strømme, Maria, 1970 ... (1)
Morandi, Vittorio (1)
Milz, Mathias, 1970- (1)
visa fler...
Zardán Gómez de la T ... (1)
Lipsanen, Harri (1)
Botas, Cristina (1)
Carriazo, Daniel (1)
Rojo, Teofilo (1)
Beyer, André (1)
Palermo, Vincenzo, 1 ... (1)
Parthenios, John (1)
Papagelis, Konstanti ... (1)
Marzari, Nicola (1)
McManus, John (1)
de Almeida, Andre L. ... (1)
Coletti, Camilla (1)
Banszerus, Luca (1)
Stampfer, Christoph (1)
Backes, Claudia (1)
Bianco, Alberto (1)
Ferrari, Andrea C. (1)
Melucci, Manuela (1)
Prato, Maurizio (1)
Xia, Zhenyuan, 1983 (1)
Abdelkader, Amr M. (1)
Alonso, Concepcion (1)
Andrieux-Ledier, Ama ... (1)
Arenal, Raul (1)
Azpeitia, Jon (1)
Balakrishnan, Nilant ... (1)
Barjon, Julien (1)
Bartali, Ruben (1)
Bellani, Sebastiano (1)
Berger, Claire (1)
Berger, Reinhard (1)
Ortega, M. M. Bernal (1)
Bernard, Carlo (1)
Beton, Peter H. (1)
Boggild, Peter (1)
Bonaccorso, Francesc ... (1)
Barin, Gabriela Bori ... (1)
Bueno, Rebeca A. (1)
Castellanos-Gomez, A ... (1)
Christian, Meganne (1)
Ciesielski, Artur (1)
Ciuk, Tymoteusz (1)
Cole, Matthew T. (1)
visa färre...
Lärosäte
Luleå tekniska universitet (2)
Uppsala universitet (1)
Högskolan i Halmstad (1)
Mälardalens universitet (1)
Linköpings universitet (1)
Chalmers tekniska högskola (1)
visa fler...
Linnéuniversitetet (1)
visa färre...
Språk
Engelska (6)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy