SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(DeFronzo Ralph A.) "

Sökning: WFRF:(DeFronzo Ralph A.)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Fuchsberger, Christian, et al. (författare)
  • The genetic architecture of type 2 diabetes
  • 2016
  • Ingår i: Nature. - : Nature Publishing Group. - 0028-0836 .- 1476-4687. ; 536:7614, s. 41-47
  • Tidskriftsartikel (refereegranskat)abstract
    • The genetic architecture of common traits, including the number, frequency, and effect sizes of inherited variants that contribute to individual risk, has been long debated. Genome-wide association studies have identified scores of common variants associated with type 2 diabetes, but in aggregate, these explain only a fraction of the heritability of this disease. Here, to test the hypothesis that lower-frequency variants explain much of the remainder, the GoT2D and T2D-GENES consortia performed whole-genome sequencing in 2,657 European individuals with and without diabetes, and exome sequencing in 12,940 individuals from five ancestry groups. To increase statistical power, we expanded the sample size via genotyping and imputation in a further 111,548 subjects. Variants associated with type 2 diabetes after sequencing were overwhelmingly common and most fell within regions previously identified by genome-wide association studies. Comprehensive enumeration of sequence variation is necessary to identify functional alleles that provide important clues to disease pathophysiology, but large-scale sequencing does not support the idea that lower-frequency variants have a major role in predisposition to type 2 diabetes.
  •  
2.
  • Manning, Alisa, et al. (författare)
  • A Low-Frequency Inactivating AKT2 Variant Enriched in the Finnish Population Is Associated With Fasting Insulin Levels and Type 2 Diabetes Risk
  • 2017
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 66:7, s. 2019-2032
  • Tidskriftsartikel (refereegranskat)abstract
    • To identify novel coding association signals and facilitate characterization of mechanisms influencing glycemic traits and type 2 diabetes risk, we analyzed 109,215 variants derived from exome array genotyping together with an additional 390,225 variants from exome sequence in up to 39,339 normoglycemic individuals from five ancestry groups. We identified a novel association between the coding variant (p.Pro50Thr) in AKT2 and fasting plasma insulin (FI), a gene in which rare fully penetrant mutations are causal for monogenic glycemic disorders. The low-frequency allele is associated with a 12% increase in FI levels. This variant is present at 1.1% frequency in Finns but virtually absent in individuals from other ancestries. Carriers of the FI-increasing allele had increased 2-h insulin values, decreased insulin sensitivity, and increased risk of type 2 diabetes (odds ratio 1.05). In cellular studies, the AKT2-Thr50 protein exhibited a partial loss of function. We extend the allelic spectrum for coding variants in AKT2 associated with disorders of glucose homeostasis and demonstrate bidirectional effects of variants within the pleckstrin homology domain of AKT2.
  •  
3.
  • Flannick, Jason, et al. (författare)
  • Data Descriptor : Sequence data and association statistics from 12,940 type 2 diabetes cases and controls
  • 2017
  • Ingår i: Scientific Data. - : Nature Publishing Group. - 2052-4463. ; 4
  • Tidskriftsartikel (refereegranskat)abstract
    • To investigate the genetic basis of type 2 diabetes (T2D) to high resolution, the GoT2D and T2D-GENES consortia catalogued variation from whole-genome sequencing of 2,657 European individuals and exome sequencing of 12,940 individuals of multiple ancestries. Over 27M SNPs, indels, and structural variants were identified, including 99% of low-frequency (minor allele frequency [MAF] 0.1-5%) non-coding variants in the whole-genome sequenced individuals and 99.7% of low-frequency coding variants in the whole-exome sequenced individuals. Each variant was tested for association with T2D in the sequenced individuals, and, to increase power, most were tested in larger numbers of individuals (> 80% of low-frequency coding variants in similar to ~82 K Europeans via the exome chip, and similar to ~90% of low-frequency non-coding variants in similar to ~44 K Europeans via genotype imputation). The variants, genotypes, and association statistics from these analyses provide the largest reference to date of human genetic information relevant to T2D, for use in activities such as T2D-focused genotype imputation, functional characterization of variants or genes, and other novel analyses to detect associations between sequence variation and T2D.
  •  
4.
  • Flannick, Jason, et al. (författare)
  • Sequence data and association statistics from 12,940 type 2 diabetes cases and controls
  • 2017
  • Ingår i: Scientific Data. - : Nature Publishing Group. - 2052-4463. ; 4
  • Tidskriftsartikel (refereegranskat)abstract
    • To investigate the genetic basis of type 2 diabetes (T2D) to high resolution, the GoT2D and T2D-GENES consortia catalogued variation from whole-genome sequencing of 2,657 European individuals and exome sequencing of 12,940 individuals of multiple ancestries. Over 27M SNPs, indels, and structural variants were identified, including 99% of low-frequency (minor allele frequency [MAF] 0.1-5%) non-coding variants in the whole-genome sequenced individuals and 99.7% of low-frequency coding variants in the whole-exome sequenced individuals. Each variant was tested for association with T2D in the sequenced individuals, and, to increase power, most were tested in larger numbers of individuals (> 80% of low-frequency coding variants in similar to 82 K Europeans via the exome chip, and similar to 90% of low-frequency non-coding variants in similar to 44 K Europeans via genotype imputation). The variants, genotypes, and association statistics from these analyses provide the largest reference to date of human genetic information relevant to T2D, for use in activities such as T2D-focused genotype imputation, functional characterization of variants or genes, and other novel analyses to detect associations between sequence variation and T2D.
  •  
5.
  • Abdul-Ghani, Muhammad A., et al. (författare)
  • Fasting Versus Postload Plasma Glucose Concentration and the Risk for Future Type 2 Diabetes Results from the Botnia Study
  • 2009
  • Ingår i: Diabetes Care. - : American Diabetes Association. - 1935-5548. ; 32:2, s. 281-286
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE - The purpose of this study was to assess the efficacy of the postload plasma glucose concentration in predicting future risk of type 2 diabetes, compared with prediction models based oil measurement. of the fasting plasma glucose (FPG) concentration. RESEARCH DESIGN AND METHODS - A total of 2,442 subjects from the Botnia Study, who were free Of type 2 diabetes at baseline, received an oral glucose tolerance test (OGTT) at baseline and after 7-8 years of follow-up. Future risk for type 2 diabetes was assessed with area under the receiver-operating characteristic curve for prediction models based up measurement of the FPG concentration 1) with or without a 1-h plasma glucose concentration during the OGTT and 2) with or without the metabolic syndrome. RESULTS - Prediction models based on measurement of the FPG concentration were weak predictors for the risk of Future type 2 diabetes. Addition of a 1-h plasma glucose Concentration markedly enhanced prediction Of the risk of future type 2 diabetes. A cut point of 155 mg/dl for the 1-h plasma glucose concentration during the OGTT and presence Of the metabolic syndrome were used to Stratify subjects in each glucose tolerance group into low, intermediate, and high risk for future type 2 diabetes. CONCLUSIONS - The plasma glucose concentration at 1 h during the OGTT is a Strong predictor of future risk for type 2 diabetes and adds to the prediction power of models based on measurements made during the fasting state. A plasma glucose cut point of 155 mg/dl Plus the Adult Treatment Panel III criteria for the metabolic syndrome can be used to stratify nondiabetic subjects into low-, intermediate-, and high-risk groups.
  •  
6.
  • Abdul-Ghani, Muhammad A., et al. (författare)
  • The shape of plasma glucose concentration curve during OGTT predicts future risk of type 2 diabetes
  • 2010
  • Ingår i: Diabetes/Metabolism Research Reviews. - : John Wiley and Sons Inc.. - 1520-7552. ; 26:4, s. 280-286
  • Tidskriftsartikel (refereegranskat)abstract
    • Background The aim of the study is to assess the relationship between the shape of plasma glucose concentration during the OGTT and future risk for T2DM. Methods 2445 non-diabetic subjects from the Botnia study received an OGTT at baseline and after 7-8 years of follow-up. Results NGT and IFG subjects who returned their plasma glucose concentration following an ingested glucose load below FPG within 60 min had increased insulin sensitivity, greater insulin secretion and lower risk for future T2DM compared to NGT and IFG subjects whose post-load plasma glucose concentration required 120 min or longer to return their plasma glucose level to FPG level. IGT subjects who had a lower plasma glucose concentration at 1-h compared to 2-h during oGrr had greater insulin sensitivity, better beta cell function and lower risk for future T2DM. Conclusions These data suggest that the shape of glucose curve can be utilized to assess future risk for T2DM. Copyright (C) 2010 John Wiley & Sons, Ltd.
  •  
7.
  • Abdul-Ghani, Muhammad A., et al. (författare)
  • Two-Step Approach for the Prediction of Future Type 2 Diabetes Risk
  • 2011
  • Ingår i: Diabetes Care. - : American Diabetes Association. - 1935-5548. ; 34:9, s. 2108-2112
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE-To develop a model for the prediction of type 2 diabetes mellitus (T2DM) risk on the basis of a multivariate logistic model and 1-h plasma glucose concentration (1-h PG). RESEARCH DESIGN AND METHODS-The model was developed in a cohort of 1,562 non-diabetic subjects from the San Antonio Heart Study (SAHS) and validated in 2,395 nondiabetic subjects in the Botnia Study. A risk score on the basis of anthropometric parameters, plasma glucose and lipid profile, and blood pressure was computed for each subject. Subjects with a risk score above a certain cut point were considered to represent high-risk individuals, and their 1-h PG concentration during the oral glucose tolerance test was used to further refine their future T2DM risk. RESULTS-We used the San Antonio Diabetes Prediction Model (SADPM) to generate the initial risk score. A risk-score value of 0.065 was found to be an optimal cut point for initial screening and selection of high-risk individuals. A 1-h PG concentration >140 mg/dL in high-risk individuals (whose risk score was >0.065) was the optimal cut point for identification of subjects at increased risk. The two cut points had 77.8, 77.4, and 44.8% (for the SAHS) and 75.8, 71.6, and 11.9% (for the Botnia Study) sensitivity, specificity, and positive predictive value, respectively, in the SAHS and Botnia Study. CONCLUSIONS-A two-step model, based on the combination of the SADPM and 1-h PG, is a useful tool for the identification of high-risk Mexican-American and Caucasian individuals. Diabetes Care 34:2108-2112, 2011
  •  
8.
  • DeFronzo, Ralph A., et al. (författare)
  • Type 2 diabetes mellitus
  • Ingår i: Nature Reviews Disease Primers. - : Nature Publishing Group. - 2056-676X. ; 1
  • Tidskriftsartikel (refereegranskat)abstract
    • Type 2 diabetes mellitus (T2DM) is an expanding global health problem, closely linked to the epidemic of obesity. Individuals with T2DM are at high risk for both microvascular complications (including retinopathy, nephropathy and neuropathy) and macrovascular complications (such as cardiovascular comorbidities), owing to hyperglycaemia and individual components of the insulin resistance (metabolic) syndrome. Environmental factors (for example, obesity, an unhealthy diet and physical inactivity) and genetic factors contribute to the multiple pathophysiological disturbances that are responsible for impaired glucose homeostasis in T2DM. Insulin resistance and impaired insulin secretion remain the core defects in T2DM, but at least six other pathophysiological abnormalities contribute to the dysregulation of glucose metabolism. The multiple pathogenetic disturbances present in T2DM dictate that multiple antidiabetic agents, used in combination, will be required to maintain normoglycaemia. The treatment must not only be effective and safe but also improve the quality of life. Several novel medications are in development, but the greatest need is for agents that enhance insulin sensitivity, halt the progressive pancreatic β-cell failure that is characteristic of T2DM and prevent or reverse the microvascular complications. For an illustrated summary of this Primer, visit: http://go.nature.com/V2eGfN.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8
 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy