Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Del Zompo M.) "

Sökning: WFRF:(Del Zompo M.)

  • Resultat 1-10 av 19
  • [1]2Nästa
Sortera/gruppera träfflistan
  • Reinbold, C. S., et al. (författare)
  • Analysis of the Influence of microRNAs in Lithium Response in Bipolar Disorder
  • 2018
  • Ingår i: Frontiers in Psychiatry. - 1664-0640. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Bipolar disorder (BD) is a common, highly heritable neuropsychiatric disease characterized by recurrent episodes of mania and depression. Lithium is the best-established long-term treatment for BD, even though individual response is highly variable Evidence suggests that some of this variability has a genetic basis. This is supported by the largest genome-wide association study (GWAS) of lithium response to date conducted by the International Consortium on Lithium Genetics (ConLiGen) Recently, we performed the first genome-wide analysis of the involvement of miRNAs in BD and identified nine BD associated miRNAs However, it is unknown whether these miRNAs are also associated with lithium response in BD. In the present study, we therefore tested whether common variants at these nine candidate miRNAs contribute to the variance in lithium response in BD. Furthermore, we systematically analyzed whether any other miRNA in the genome is implicated in the response to lithium. For this purpose, we performed gene-based tests for all known miRNA coding genes in the ConLiGen GWAS dataset (n = 2,563 patients) using a set-based testing approach adapted from the versatile gene based test for GWAS (VEGAS2). In the candidate approach, miR-499a showed a nominally significant association with lithium response, providing some evidence for involvement in both development and treatment of BD. In the genome-wide miRNA analysis, 71 miRNAs showed nominally significant associations with the dichotomous phenotype and 106 with the continuous trait for treatment response. A total of 15 miRNAs revealed nominal significance in both phenotypes with miR-633 showing the strongest association with the continuous trait (p = 9.80E-04) and miR-607 with the dichotomous phenotype (p = 5.79E-04). No association between miRNAs and treatment response to lithium in BD in either of the tested conditions withstood multiple testing correction. Given the limited power of our study, the investigation of miRNAs in larger GWAS samples of BD and lithium response is warranted.
  • Amare, A. T., et al. (författare)
  • Association of polygenic score for major depression with response to lithium in patients with bipolar disorder
  • 2020
  • Ingår i: Molecular Psychiatry. - 1359-4184.
  • Tidskriftsartikel (refereegranskat)abstract
    • Lithium is a first-line medication for bipolar disorder (BD), but only one in three patients respond optimally to the drug. Since evidence shows a strong clinical and genetic overlap between depression and bipolar disorder, we investigated whether a polygenic susceptibility to major depression is associated with response to lithium treatment in patients with BD. Weighted polygenic scores (PGSs) were computed for major depression (MD) at different GWAS p value thresholds using genetic data obtained from 2586 bipolar patients who received lithium treatment and took part in the Consortium on Lithium Genetics (ConLi(+)Gen) study. Summary statistics from genome-wide association studies in MD (135,458 cases and 344,901 controls) from the Psychiatric Genomics Consortium (PGC) were used for PGS weighting. Response to lithium treatment was defined by continuous scores and categorical outcome (responders versus non-responders) using measurements on the Alda scale. Associations between PGSs of MD and lithium treatment response were assessed using a linear and binary logistic regression modeling for the continuous and categorical outcomes, respectively. The analysis was performed for the entire cohort, and for European and Asian sub-samples. The PGSs for MD were significantly associated with lithium treatment response in multi-ethnic, European or Asian populations, at various p value thresholds. Bipolar patients with a low polygenic load for MD were more likely to respond well to lithium, compared to those patients with high polygenic load [lowest vs highest PGS quartiles, multi-ethnic sample: OR = 1.54 (95% CI: 1.18-2.01) and European sample: OR = 1.75 (95% CI: 1.30-2.36)]. While our analysis in the Asian sample found equivalent effect size in the same direction: OR = 1.71 (95% CI: 0.61-4.90), this was not statistically significant. Using PGS decile comparison, we found a similar trend of association between a high genetic loading for MD and lower response to lithium. Our findings underscore the genetic contribution to lithium response in BD and support the emerging concept of a lithium-responsive biotype in BD.
  • Kunkle, Brian W., et al. (författare)
  • Genetic meta-analysis of diagnosed Alzheimer's disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing
  • 2019
  • Ingår i: Nature genetics. - 1546-1718. ; 51:3, s. 414-
  • Tidskriftsartikel (refereegranskat)abstract
    • Risk for late-onset Alzheimer's disease (LOAD), the most prevalent dementia, is partially driven by genetics. To identify LOAD risk loci, we performed a large genome-wide association meta-analysis of clinically diagnosed LOAD (94,437 individuals). We confirm 20 previous LOAD risk loci and identify five new genome-wide loci (IQCK, ACE, ADAM10, ADAMTS1, and WWOX), two of which (ADAM10, ACE) were identified in a recent genome-wide association (GWAS)-by-familial-proxy of Alzheimer's or dementia. Fine-mapping of the human leukocyte antigen (HLA) region confirms the neurological and immune-mediated disease haplotype HLA-DR15 as a risk factor for LOAD. Pathway analysis implicates immunity, lipid metabolism, tau binding proteins, and amyloid precursor protein (APP) metabolism, showing that genetic variants affecting APP and A beta processing are associated not only with early-onset autosomal dominant Alzheimer's disease but also with LOAD. Analyses of risk genes and pathways show enrichment for rare variants (P = 1.32 x 10-7), indicating that additional rare variants remain to be identified. We also identify important genetic correlations between LOAD and traits such as family history of dementia and education.
  • Bauer, M., et al. (författare)
  • Solar insolation in springtime influences age of onset of bipolar I disorder
  • 2017
  • Ingår i: Acta Psychiatrica Scandinavica. - 0001-690X. ; 136:6, s. 571-582
  • Forskningsöversikt (refereegranskat)abstract
    • Objective: To confirm prior findings that the larger the maximum monthly increase in solar insolation in springtime, the younger the age of onset of bipolar disorder. Method: Data were collected from 5536 patients at 50 sites in 32 countries on six continents. Onset occurred at 456 locations in 57 countries. Variables included solar insolation, birth-cohort, family history, polarity of first episode and country physician density. Results: There was a significant, inverse association between the maximum monthly increase in solar insolation at the onset location, and the age of onset. This effect was reduced in those without a family history of mood disorders and with a first episode of mania rather than depression. The maximum monthly increase occurred in springtime. The youngest birth-cohort had the youngest age of onset. All prior relationships were confirmed using both the entire sample, and only the youngest birth-cohort (all estimated coefficients P < 0.001). Conclusion: A large increase in springtime solar insolation may impact the onset of bipolar disorder, especially with a family history of mood disorders. Recent societal changes that affect light exposure (LED lighting, mobile devices backlit with LEDs) may influence adaptability to a springtime circadian challenge.
  • Lambert, J-C, et al. (författare)
  • Genome-wide haplotype association study identifies the FRMD4A gene as a risk locus for Alzheimer's disease
  • 2013
  • Ingår i: Molecular Psychiatry. - 1359-4184. ; 18:4, s. 461-470
  • Tidskriftsartikel (refereegranskat)abstract
    • Recently, several genome-wide association studies (GWASs) have led to the discovery of nine new loci of genetic susceptibility in Alzheimer's disease (AD). However, the landscape of the AD genetic susceptibility is far away to be complete and in addition to single-SNP (single-nucleotide polymorphism) analyses as performed in conventional GWAS, complementary strategies need to be applied to overcome limitations inherent to this type of approaches. We performed a genome-wide haplotype association (GWHA) study in the EADI1 study (n = 2025 AD cases and 5328 controls) by applying a sliding-windows approach. After exclusion of loci already known to be involved in AD (APOE, BIN1 and CR1), 91 regions with suggestive haplotype effects were identified. In a second step, we attempted to replicate the best suggestive haplotype associations in the GERAD1 consortium (2820 AD cases and 6356 controls) and observed that 9 of them showed nominal association. In a third step, we tested relevant haplotype associations in a combined analysis of five additional case-control studies (5093 AD cases and 4061 controls). We consistently replicated the association of a haplotype within FRMD4A on Chr.10p13 in all the data set analyzed (OR: 1.68; 95% CI: (1.43-1.96); P=1.1 x 10(-10)). We finally searched for association between SNPs within the FRMD4A locus and A beta plasma concentrations in three independent non-demented populations (n = 2579). We reported that polymorphisms were associated with plasma A beta 42/A beta 40 ratio (best signal, P=5.4 x 10(-7)). In conclusion, combining both GWHA study and a conservative three-stage replication approach, we characterised FRMD4A as a new genetic risk factor of AD.
  • Escott-Price, Valentina, et al. (författare)
  • Gene-Wide Analysis Detects Two New Susceptibility Genes for Alzheimer's Disease
  • 2014
  • Ingår i: PLoS ONE. - 1932-6203. ; 9:6, s. e94661
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Alzheimer's disease is a common debilitating dementia with known heritability, for which 20 late onset susceptibility loci have been identified, but more remain to be discovered. This study sought to identify new susceptibility genes, using an alternative gene-wide analytical approach which tests for patterns of association within genes, in the powerful genome-wide association dataset of the International Genomics of Alzheimer's Project Consortium, comprising over 7 m genotypes from 25,580 Alzheimer's cases and 48,466 controls. Principal Findings: In addition to earlier reported genes, we detected genome-wide significant loci on chromosomes 8 (TP53INP1, p = 1.4x10(-6)) and 14 (IGHV1-67 p = 7.9x10(-8)) which indexed novel susceptibility loci. Significance: The additional genes identified in this study, have an array of functions previously implicated in Alzheimer's disease, including aspects of energy metabolism, protein degradation and the immune system and add further weight to these pathways as potential therapeutic targets in Alzheimer's disease.
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 19
  • [1]2Nästa
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy